References
- Fellner V. 2002. Rumen microbes and nutrient management. Available from https://projects.ncsu.edu/project/swine_extension/swinereports/2004-2005/dairycattle/nutrition/fellner1.htm. Accessed Nov. 22, 2018.
- Chesson A, Forsberg CW. 1997. Polysaccharide degradation by rumen microorganism, pp. 329-381. In The Rumen Microbial Ecosystem. Dordrecht: Springer.
- Gournier-Chateau N, Larpent JP, Castellanos MI, Larpent JL. 1994. Probiotics in animal and human nutrition, pp. 192. Les probiotiques en Aliment. Anim. Hum. Paris. Technique et Documentation Lavoisier.
- Jouany JP, Morgavi DP. 2007. Use of “natural” products as alternatives to antibiotic feed additives in ruminant production. Animal 1: 1443-1466. https://doi.org/10.1017/S1751731107000742
- Guedes CM, Goncalves D, Rodrigues MAM, Dias-da-Silva A. 2008. Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Anim. Feed. Sci. Technol. 145: 27-40. https://doi.org/10.1016/j.anifeedsci.2007.06.037
- Wallace RJ, Colombatto D, Robinson PH. 2008. Enzymes, direct-fed microbials and plant extracts in ruminant nutrition. Anim. Feed. Sci. Technol. 145: 1-4. https://doi.org/10.1016/j.anifeedsci.2007.07.006
- Wallace RJ. 1994. Ruminal microbiology, biotechnology, and ruminant nutrition: progress and problems. J. Anim. Sci. 72: 2992-3003. https://doi.org/10.2527/1994.72112992x
- Bernardeau M, Vernoux JP. 2013. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans. Clin. Microbiol. Infect. 19: 321-330. https://doi.org/10.1111/1469-0691.12130
- Aluwong T, Kobo PI, Abdullahi A. 2013.Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: a review. Afr. J. Biotechnol. 9: 6229-6232.
- Bugaut M. 1987. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. B. 86: 439-472. https://doi.org/10.1016/0305-0491(87)90433-0
- Li X, Hojberg O, Canibe N, Jensen BB. 2016. Phylogenetic diversity of cultivable butyrate-producing bacteria from pig gut content and feces. J. Anim. Sci. 94: 377-381.
- Scheppach W. 1994. Effects of short chain fatty acids on gut morphology and function. Gut 35 Suppl 1: S35-S38. https://doi.org/10.1136/gut.35.1_Suppl.S35
- Kato SI, Sato K, Chida H, Roh SG, Ohwada S, Sato S, et al. 2011. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves. J. Endocrinol. 211: 241-248. https://doi.org/10.1530/JOE-11-0299
- Pierce, J., Marjen, M. and Goossens T. 2004. Butyrate: Feeding the gut and beyond for animal health. https://nutriad.com/2015/01/butyrate-feeding-the-gut-and-beyond-for-animal-health-2/. Accessed 20 Nov. 2018.
- Canani RB, Di Costanzo M, Leone L. 2012. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin. Epigenetics 4(1): 4. doi: 10.1186/1868-7083-4-4.
- Vital M, Penton CR, Wang Q, Young VB, Antonopoulos DA, Sogin ML, et al. 2013. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 1: 8. https://doi.org/10.1186/2049-2618-1-8
- Levine UY, Looft T, Allen HK, Stanton TB. 2013. Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Appl. Environ. Microbiol. 79: 3879-3881. https://doi.org/10.1128/AEM.00589-13
- Mrazek J, Tepsic K, Avgustin G, Kopecny J. 2006. Diet-dependent shifts in ruminal butyrate-producing bacteria. Folia Microbiol. 51: 294-298. https://doi.org/10.1007/BF02931817
- Miyazaki K, Martin JC, Marinsek-Logar R, Flint HJ. 1997. Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B14. Anaerobe 3: 373-381. https://doi.org/10.1006/anae.1997.0125
- Singh S, Kundu SS. 2011. Comparative rumen microbial population in sheep fed Dicantium annulatum grass supplemented with Leucaena leucocephala and Hardwickia binata tree leaves. Livest. Res. Rural Dev. 23: 117-132.
- Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, United Kingdom.
- Madden T. 2003. The BLAST Sequence Analysis Tool. 2nd edition. NCBI Handbook[internet]. National Center for Biotechnology Information (USA).
- Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evo.l Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
- Richard C, Beaudouin E, Moneret-Vautrin DA, Kohler C, Nguyen-Grosjean VM, Jacquenet S. 2016. Severe anaphylaxis to propofol: first case of evidence of sensitization to soy oil. Eur. Ann. Allergy Clin. Immunol. 48: 103-106.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution (NY) 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Asanuma N, Iwamoto M, Hino T. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82: 780-787. https://doi.org/10.3168/jds.S0022-0302(99)75296-3
- Chaney AL, Marbach EP. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132. https://doi.org/10.1093/clinchem/8.2.130
- Castillo-Lopez E, Klopfenstein TJ, Fernando SC, Kononoff PJ. 2013. In vivo determination of rumen undegradable protein of dried distillers grains with solubles and evaluation of duodenal microbial crude protein flow. J. Anim. Sci. 91: 924-934. https://doi.org/10.2527/jas.2012-5323
- Keis S, Shaheen R, Jones DT. 2001. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int. J. Syst. Evol. Microbiol. 51: 2095-2103. https://doi.org/10.1099/00207713-51-6-2095
- Bergman EN. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70: 567-590. https://doi.org/10.1152/physrev.1990.70.2.567
- Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK. 2008. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190: 843-850. https://doi.org/10.1128/JB.01417-07
- Li RW, Wu S, Baldwin VI RL, Li W, Li C. 2012. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate. PLoS One 7: e29392. https://doi.org/10.1371/journal.pone.0029392
- Bedford A, Gong J. 2018. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 4: 151-159. https://doi.org/10.1016/j.aninu.2017.08.010
- Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2: 23-28. https://doi.org/10.1128/AAC.2.1.23
- Thormar H, Hilmarsson H, Bergsson G. 2006. Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Appl. Environ. Microbiol. 72: 522-526. https://doi.org/10.1128/AEM.72.1.522-526.2006
- Keis S, Bennett CF, Ward VK, Jones DT. 1995. Taxonomy and phylogeny of industrial solvent-producing clostridia. Int. J. Syst. Bacteriol. 45: 693-705. https://doi.org/10.1099/00207713-45-4-693
- JohnsonN JL, Toth J, Santiwatanakul S, Chen JS. 1997. Cultures of "Clostridium acetobutylicum" from Various Collections Comprise Clostridium acetobutylicum, Clostridium beijerinckii, and Two Other Distinct Types Based on DNA-DNA Reassociation. Int. J. Syst. Bacteriol. 47: 420-424. https://doi.org/10.1099/00207713-47-2-420
- Meesukanun K, Satirapipathkul C. 2014. Production of acetone-butanol-ethanol from cassava rhizome hydrolysate by Clostridium saccharobutylicum BAA 117. Chem. Eng. Trans. 37: 421-426.
- Rymer C, Huntington JA, Williams BA, Givens DI. 2005. In vitro cumulative gas production techniques: history, methodological considerations and challenges. Anim. Feed Sci. Technol. 123: 9-30. https://doi.org/10.1016/j.anifeedsci.2005.04.055
- Metzler-Zebeli BU, Scherr C, Sallaku E, Drochner W, Zebeli Q. 2012. Evaluation of associative effects of total mixed ration for dairy cattle using in vitro gas production and different rumen inocula. J. Sci. Food Agric. 92: 2479-2485. https://doi.org/10.1002/jsfa.5656
- Doto S, Liu J. 2011. Effects of direct-fed microbials and their combinations with yeast culture on in vitro rumen fermentation characteristics. J. Anim. Feed Sci. 20: 259-271. https://doi.org/10.22358/jafs/66183/2011
- Cummings JH, Macfarlane GT. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70: 443-459. https://doi.org/10.1111/j.1365-2672.1991.tb02739.x
- Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294: 1-8. https://doi.org/10.1111/j.1574-6968.2009.01514.x
- Bryant MP. 1974. Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. Am. J. Clin. Nutr. 27: 1313-1319. https://doi.org/10.1093/ajcn/27.11.1313
- Satter LD, Slyter LL.1974. Effect of ammonia concentration of rumen microbial protein production in vitro. Br. J. Nutr. 32: 199-208. https://doi.org/10.1079/BJN19740073
- Hristov AN, McAllister TA, Xu Z, Newbold CJ. 2002. Proteolytic activity in ruminal fluid from cattle fed two levels of barley grain: A comparison of three methods of determination. J. Sci. Food Agric. 82: 1886-1893. https://doi.org/10.1002/jsfa.1238
- Soriano AP, Mamuad LL, Kim SH, Choi YJ, Jeong CD, Bae GS, et al. 2014. Effect of Lactobacillus mucosae on in vitro rumen fermentation characteristics of dried brewers grain, methane production and bacterial diversity. Asian-Australasian J. Anim. Sci. 27: 1562-1570. https://doi.org/10.5713/ajas.2014.14517
- Mamuad L, Kim SH, Jeong CD, Choi YJ, Jeon CO, Lee SS. 2014. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J. Microbiol. 52: 120-128. https://doi.org/10.1007/s12275-014-3518-1
- Kim SH, Mamuad LL, Kim DW, Kim SK, Lee SS. 2016. Fumarate reductase-producing enterococci reduce methane production in rumen fermentation in vitro. J. Microbiol. Biotechnol. 26: 558-566. https://doi.org/10.4014/jmb.1512.12008
- Ghorbani GR, Morgavi DP, Beauchemin KA, Leedle JAZ. 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J. Anim. Sci. 80: 1977-1985. https://doi.org/10.2527/2002.8071977x
- Chiquette J, Allison MJ, Rasmussen M. 2012. Use of Prevotella bryantii 25A and a commercial probiotic during subacute acidosis challenge in midlactation dairy cows. J. Dairy Sci. 95: 5985-5995. https://doi.org/10.3168/jds.2012-5511
- Kowalski ZM, Gorka P, Flaga J, Barteczko A, Burakowska K, Oprządek J, et al. 2015. Effect of microencapsulated sodium butyrate in the close-up diet on performance of dairy cows in the early lactation period. J. Dairy Sci. 98: 3284-3291. https://doi.org/10.3168/jds.2014-8688
- Qadis AQ, Goya S, Ikuta K, Yatsu M, Kimura A, Nakanishi S, et al. 2014. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. J. Vet. Med. Sci. 76: 877-885. https://doi.org/10.1292/jvms.14-0028
- Timpka T, Eriksson H, Gursky EA, Strömgren M, Holm E, Ekberg J, et al. 2011. Requirements and design of the PROSPER protocol for implementation of information infrastructures supporting pandemic response: a nominal group study. PLoS One 6: e17941 https://doi.org/10.1371/journal.pone.0017941
- Block E. 2006. Rumen microbial protein production: Are we missing an opportunity to improve dietary and economic efficiencies in protein nutrition of the high producing dairy cow? In: High Plains Dairy Conference. Available from http//.www.highplainsdairy.org/2006/Block-pdf. Accessed Nov. 18, 2018.
- Castillo-Lopez E. 2012. Intestinal flow of microbial protein and rumen undegradable protein in cattle fed corn distillers grains and solubles, with emphasis during lactation. Vailable from https://digitalcommons.unl.edu/animalscidiss/60/. Accessed Nov. 21, 2018.
- Storm AC, Kristensen NB, Hanigan MD. 2012. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. J. Dairy Sci. 95: 2919-2934. https://doi.org/10.3168/jds.2011-4239
- Sakata T, Tamate H. 1978.Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate. J. Dairy Sci. 61: 1109-1113. https://doi.org/10.3168/jds.S0022-0302(78)83694-7
- Graham C, Simmons NL. 2005. Functional organization of the bovine rumen epithelium. Am. J. Physiol. Integr. Comp. Physiol. 288: R173-181. https://doi.org/10.1152/ajpregu.00425.2004
- Mamuad LL, Kim SH, Choi YJ, Soriano AP, Cho KK, Lee K, et al. 2017. Increased propionate concentration in Lactobacillus mucosae-fermented wet brewers grains and during in vitro rumen fermentation. J. Appl. Microbiol. 123: 29-40. https://doi.org/10.1111/jam.13475
- Gorka P, Kowalski ZM, Pietrzak P, Kotunia A, Kiljanczyk R, Flaga J, et al. 2009. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves. J. Physiol. Pharmacol. 3 Suppl: 47-53.
- Patra RC, Lal SB, Swarup D. 1996. Biochemical profile of rumen liquor, blood and urine in experimental acidosis in sheep. Small Rumin. Res. 19: 177-180. https://doi.org/10.1016/0921-4488(95)00743-1
- Mao SY, Zhang G, Zhu WY. 2008. Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Anim. Feed Sci. Technol. 140: 293-306. https://doi.org/10.1016/j.anifeedsci.2007.04.001
- Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, et al. 2014. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J. Clin. Microbiol. 52: 398-406. https://doi.org/10.1128/JCM.01500-13
- Flint HJ, Duncan SH, Scott KP, Louis P. 2007. Interactions and competition within the microbial community of the human colon: Links between diet and health. Environ. Microbiol. 9: 1101-1111. https://doi.org/10.1111/j.1462-2920.2007.01281.x
- Denman SE, McSweeney CS. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58: 572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
- Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL. 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 134: 3378-3384. https://doi.org/10.1093/jn/134.12.3378
- Yu Y, Lee C, Kim J, Hwang S. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89: 670-679. https://doi.org/10.1002/bit.20347
- Sylvester JT, Karnati SKR, Yu Z, Newbold CJ, Firkins JL. 2005. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J. Dairy Sci. 88: 2083-2095. https://doi.org/10.3168/jds.S0022-0302(05)72885-X
Cited by
- Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro vol.8, pp.8, 2019, https://doi.org/10.3390/microorganisms8081160
- Supplementing the Diet of Dairy Goats with Dried Orange Pulp throughout Lactation: I. Effect on Milk Performance, Nutrient Utilisation, Blood Parameters and Production Economics vol.11, pp.9, 2021, https://doi.org/10.3390/ani11092601
- Dietary fiber‐derived short‐chain fatty acids: A potential therapeutic target to alleviate obesity‐related nonalcoholic fatty liver disease vol.22, pp.11, 2019, https://doi.org/10.1111/obr.13316
- An efficient system for intestinal on-site butyrate production using novel microbiome-derived esterases vol.15, pp.1, 2019, https://doi.org/10.1186/s13036-021-00259-4