Electron Beam-Assisted Conjugated Polyelectrolyte/Graphene Oxide Hybrid as a Hole Transporting Material in Organic Solar Cells

  • Oh, Seung-Hwan (Radiation Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hyun Bin (Radiation Research Division, Korea Atomic Energy Research Institute) ;
  • Yun, Jin-Mun (Radiation Research Division, Korea Atomic Energy Research Institute)
  • Received : 2019.06.09
  • Accepted : 2019.07.13
  • Published : 2019.09.30

Abstract

The 9-bis((6'-(N,N,N-trimethylammonium) hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F) and graphene oxide (GO) were simply blended and irradiated with electron beam under ambient conditions. Compared to the electrical conductivity of pristine GO and WPF-6-oxy-F-GO with electron beam processing, the conductivity of WPF-6-oxy-F-GO was enhanced by about three orders of magnitude because of the effect of efficient π-π packing induced by C-N bonds between WPF-6-oxy-F and GO through the electron beam processing. The WPF-6-oxy-F-GO composite was used as a hole-transporting layer (HTL) in organic solar cells(OSCs). As a result, the efficiency of the OSCs was dramatically enhanced by ~ 6.72% by introducing irradiated WPF-6-oxy-F-GO as an HTL in OSCs.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (Ministry of Science and ICT) (NRF-2017M2A2A6A01019867).

References

  1. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong B and Iijima S. 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5(8):574-578. https://doi.org/10.1038/nnano.2010.132
  2. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia S and Williams SP. 2010. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22(34):3839-3856. https://doi.org/10.1002/adma.200903697
  3. Cheun H, Hernandez CF, Zhou Y, Potscavage WJ, Kim SJ, Shim J, Dindar A and Kippelen B. 2010. Electrical and optical properties of ZnO processed by atomic layer deposition in inverted polymer solar cells. J. Phys. Chem. 114(48):20713-20718.
  4. Groenendaal L, Jonas F, Freitag D, Pielartzik H and Reynolds JR. 2000. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12(7):481-494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  5. Hoppe H and Sariciftci NS. 2004. Organic solar cells: An overview. J. Mater. Res. 19(7):1924-1945. https://doi.org/10.1557/JMR.2004.0252
  6. Jorgensen M, Norrman K and Krebs FC. 2008. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells. 92(7):686-714. https://doi.org/10.1016/j.solmat.2008.01.005
  7. Kim Y, Ballantyne AM, Nelson J and Bradley DD. 2009. Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells. Org. Electron. 10(1):205-209. https://doi.org/10.1016/j.orgel.2008.10.003
  8. Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW and Kwong DL. 2008. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93(2008):221107-221109. https://doi.org/10.1063/1.3039076
  9. Li SS, Tu KH, Lin CC, Chen CW and Chhowalla M. 2010. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano. 4(6):3169-3174. https://doi.org/10.1021/nn100551j
  10. Liao HH, Chen LM, Xu Z, Li G and Yang Y. 2008. Highly effcient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. 2008. Appl. Phys. Lett. 92(2008):173303-173305. https://doi.org/10.1063/1.2918983
  11. Lucht BL, Mao SSH and Tilley TD. 1998. A zirconocene-coupling route to substituted poly(p-phenylenedienylene)s: band gap tuning via conformational control. J. Am. Chem. Soc. 120(18):4354-4365. https://doi.org/10.1021/ja9743811
  12. Luo D, Zhang G, Liu J and Sun X. 2011. Evaluation criteria for reduced graphene oxide. J. Phy. Chem. C. 115(23):11327-11335. https://doi.org/10.1021/jp110001y
  13. Na SI, Wang G, Kim SS, Kim TW, Oh SH, Yu BK, Lee T and Kim DY. 2009. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 19(47):9045-9053. https://doi.org/10.1039/b915756e
  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV and Firsov AA. 2004. Electric field effect in atomically thin carbon films. Science. 306(5696):666-669. https://doi.org/10.1126/science.1102896
  15. Oh SH, Na SI, Jo J, Lim B, Vak D and Kim DY. 2010. Water-soluble polyfluorenes as an interfacial layer leading to cathode-independent high performance of organic solar cells. Adv. Funct. Mater. 20(12):1977-1983. https://doi.org/10.1002/adfm.200902386
  16. Olson DC, Lee YJ, White MS, Kopidakis N, Shaheen SE, Ginley DS, Voigt JA and Hsu JWP. 2008. Effect of ZnO processing on the photovoltage of ZnO/poly(3-hexylthiophene) solar cells. J. Phys. Chem. C. 112(26):9544-547. https://doi.org/10.1021/jp802626u
  17. Olson DC, Piris J, Collins RT, Shaheen SE and Ginley DS. 2006. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films. 496(1): 26-29. https://doi.org/10.1016/j.tsf.2005.08.179
  18. Shankar K, Mor GK, Prakasam HE, Varghese OK and Grimes GA. 2008. Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. Journal of Non-crystalline Solids. 354(19-25):2767-2771. https://doi.org/10.1016/j.jnoncrysol.2007.09.070
  19. Shrotriya V, Li G, Yao YY, Chu CW and Yang Y. 2006. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88(2006):073508-073510. https://doi.org/10.1063/1.2174093
  20. Steim R, Kogler FR and Brabec CJ. 2010. Interface materials for organic solar cells. J. Mater. Chem. 20(13):2499-2512. https://doi.org/10.1039/b921624c
  21. Walzer K, Maennig B, Pfeiffer M and Leo K. 2007. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107(4):1233-1271. https://doi.org/10.1021/cr050156n
  22. White MS, Olson DC, Shaheen SE, Kopidakis N and Ginley DS. 2006. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89(2006):143517-143519. https://doi.org/10.1063/1.2359579
  23. Yang D, Velamakanni A, Bozoklu G, Park SJ, Stroller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA and Ruoff RS. 2010. The effect of chlorofluoromethanes on graphite oxidation. Carbon. 47(1):145-153. https://doi.org/10.1016/j.carbon.2008.09.045
  24. Yeo JS, Yun JM, Kim DY, Park S, Kim SS, Yoon MH, Kim TW and Na SI. 2010. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. ACS Appl. Mater. Interfaces. 4(5):2551-2560.
  25. Yip HL, Hau SK, Baek NS, Ma H and Jen AKY. 2008. Polymer solar cells that use self-assembled-monolayer- modified ZnO/metals as cathodes. Adv. Mater. 20(12): 2376-2382. https://doi.org/10.1002/adma.200703050
  26. Zhang F, Jhoansson M, Andersson MR, Hummelen JC and Inganas O. 2002. Polymer photovoltaic cells with conducting polymer anodes. Adv. Mater. 14(9):662-665. https://doi.org/10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N
  27. Zheng Q, Fang G, Cheng F, Lei H, Quin P and Zhan C. 2013. Low-temperature solution-processed graphene oxide derivative hole transport layer for organic solar cells. J. Phys. D: Appl. Phys. 46(2013):135101-135108. https://doi.org/10.1088/0022-3727/46/13/135101
  28. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR and Ruoff JS. 2010. Graphene and graphene oxide : synthesis, properties, and applications. Adv. Mater. 22(35): 3906-3924. https://doi.org/10.1002/adma.201001068