DOI QR코드

DOI QR Code

Application of reproductive allocation index to the analysis of growth and maturation patterns of Sargassum macrocarpum C. Agardh in Jeju Island, Korea

제주연안 큰열매모자반의 생장과 성숙패턴 분석을 위한 생식배분 지수의 적용

  • 고신자 (제주대학교 해양과학연구소) ;
  • 김유경 (제주대학교 해양과학연구소) ;
  • 홍성완 (제주해양수산연구원) ;
  • 강민수 (제주해양수산연구원) ;
  • 황은경 (국립수산과학원 수산식물품종관리센터) ;
  • 이영돈 (제주대학교 해양과학연구소)
  • Received : 2019.11.08
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

The ecological characteristics of Sargassum macrocarpum, an ecologically and commercially valuable brown alga, were investigated from May 2018 to June 2019 in Jeju Island, Korea. The S. macrocarpum population formed patches at depths of 3-5 m. Growth in the length of the alga reached a maximum of 135.3±20.0 cm in June. The weight of the alga reached a maximum of 3.6±2.1 kg·wet-wt in May. The mean density and biomass of S. macrocarpum was 4.5 individuals·m-2 and 4.6 kg·wet-wt.·m-2 in their habitat. Receptacles were observed from April to August and egg release was detected from June to July when the seawater temperatures were 19.3-22.9℃. The developmental initiation of thalli occurred at temperatures above 14.1℃ and maturation required approximately 726.3 degree-days. The reproductive allocation of this alga, calculated from the reproductive frond length(RFL) and reproductive frond weight(RFW) indices to the whole length and weight, reached a maximum of 69.3% in June. The growth and maturation patterns of S. macrocarpum could be divided into vegetative growth (October-January), maturity preparation (February-April), maturation (May-June), egg release (June-July), and resting period (August-September). This was the first study to examine an S. macrocarpum population throughout the entire year in a natural habitat in Jeju Island, Korea.

큰열매모자반은 제주도 연안 생태계에서 수관층을 형성하는 중요한 다년생 갈조류이다. 이 연구는 2018년 5월부터 2019년 6월까지 제주연안에서 큰열매모자반 개체군의 생장 및 생식패턴을 밝히기 위하여 수행되었다. 큰열매모자반 개체군의 정량조사를 통해 월별 형질분석, 밀도 및 현존량 분석을 실시하였다. 또한 큰열매모자반의 생식자원 배분 특성을 조사하기 위하여 전체 엽체길이 및 엽중량에 대한 생식엽길이와 중량비율을 측정하였다. 조사지역에서 큰열매모자반의 최대 엽장은 6월에 135.3±20.0 cm, 최대 엽중량은 5월에 평균 3.6±2.1kg·wet-wt., 평균밀도는 4.5 individuals·m-2 및 평균현존량은 4.6 kg·wet-wt.·m-2였다. 생식기탁의 형성은 4~8월(수온 16.1~25.0℃)까지 관찰되었으며, 난 방출 시기는 6~7월(수온 19.3~22.9℃)이었다. 엽체의 발달은 수온 14.1℃ 이상의 조건에서 이루어 졌으며, 성숙에 요구되는 유효 적산온도는 726.3 degree-days였다. 큰열매모자반의 생식배분은 6월에 최대 69.3%로 나타났다. 큰열매모자반의 생장과 성숙패턴은 생장기(10~1월), 생식시작기(2~4월), 성숙기(5~6월), 난 방출기(6~7월) 및 휴지기(8~9월)로 구분되었다.

Keywords

References

  1. Allen JC. 1976. A modified sine wave method for calculating degree-days. Environ. Entomol. 5:388-396. https://doi.org/10.1093/ee/5.3.388
  2. Araujo RM, EA Serrao, I Sousa-Pinto and P Aberg. 2014. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): A comparison between central and range edge populations. PLoS One 9:1-10.
  3. Arenas F, C Fernandez, JM Rico, E Fernandez and D Haya. 1995. Growth and reproductive strategies of Sargassum muticum (Yendo) Fensholt and Cystoseira nodicaulis (Whit.) Roberts. Sci. Mar. 59:1-8.
  4. Arenas F and C Fernandez. 1998. Ecology of Sargassum muticum (Phaeophyta) on the North Coast of Spain: III. Reproductive ecology. Bot. Mar. 41:209-216.
  5. Baskerville GL and P Emin. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50:514-517. https://doi.org/10.2307/1933912
  6. Bogdanowicz AM, P Olejniczak, M Lembicz and W Zukowski. 2011. Costs of reproduction in life history of a perennial plant Carex secalina. Cent. Eur. J. Biol. 6:870-877.
  7. Brenchley JL, JA Raven and AM Johnston. 1996. A comparison of reproductive allocation and reproductive effort between semelparous and iteroparous fucoids (Fucales, Phaeophyta). Hydrobiologia 326:185-190. https://doi.org/10.1007/BF00047805
  8. Chandraraj S, B Prakash and K Navanath. 2010. Immunomodulatory activities of ethyl acetate extracts of two marine sponges Gelliodes fibrosa and Tedania anhelans and brown algae Sargassum ilicifolium with reference to phagocytosis. Res. J. Pharm. Biol. Chem. Sci. 1:302-307.
  9. Choi BW, GS Ryu, SH Park, ES Kim, JH Shin, SS Roh, HC Shin and BH Lee. 2007. Anticholinesterase activity of Plastoquinones from Sargassum sagamianum: Lead compounds for Alzheimer's disease therapy. Phytother. Res. 21:423-426. https://doi.org/10.1002/ptr.2090
  10. Chu SH, QS Zhang, SK Liu, SB Zhang, YZ Tang, ZC Lu and YQ Yu. 2011. Trade-off between vegetative regeneration and sexual reproduction of Sargassum thunbergii. Hydrobiologia 678:127-135. https://doi.org/10.1007/s10750-011-0835-9
  11. Dring MJ. 1974. Reproduction. pp. 814-837. In Algal Physiology and Biochemistry, WDP Stewart (ed.). Blackwell Scientific Publications, Oxford.
  12. Endo H, T Nishigaki, K Yamamoto and K Takeno. 2013. Age- and size-based morphological comparison between the brown alga Sargassum macrocarpum (Heterokonta; Fucales) from different depths at an exposed coast in northern Kyoto, Japan. J. Appl. Phycol. 25:1815-1822. https://doi.org/10.1007/s10811-013-0002-y
  13. Fowler-Walker MJ, T Wernberg and SD Connel. 2006. Differences in kelp morphology between wave sheltered and exposed localities; morphology plastic or fixed traits? Mar. Biol. 148:755-767. https://doi.org/10.1007/s00227-005-0125-z
  14. Gillespiea RD and AT Critchley. 2001. Reproductive allocation and strategy of Sargassum elegans Suhr and Sargassum incisifolium (Turner) C. Agardh from Reunion Rocks, KwaZulu-Natal, South Africa. Bot. Mar. 44:231-235. https://doi.org/10.1515/BOT.2001.030
  15. Hwang EK, CS Park and JM Baek. 2006. Artificial seed production and cultivation of the edible brown alga, Sargassum fulvellum (Turner) C. Agardh: Developing a new species for seaweed cultivation in Korea. J. Appl. Phycol. 18:251-257. https://doi.org/10.1007/s10811-006-9021-2
  16. Hwang EK, CS Park, JW Han, WJ Shin, CG Choi and CH Sohn. 2003. Growth and maturation of a green alga, Caulerpa okamurae Weber van Bosse. Algae 18:217-223. https://doi.org/10.4490/ALGAE.2003.18.3.217
  17. Hwang EK, HC Yoo, DS Ha and CS Park. 2015. Growth and maturation period of Silvetia siliquosa in the natural population in Jindo, South Korea. Korean J. Fish. Aquat. Sci. 48:745-751. https://doi.org/10.5657/KFAS.2015.0745
  18. Hwang EK, YG Gong and CS Park. 2010. Ecological characteristics of the endangered brown alga, Undariopsis peterseniana (Kjellman) Miyabe et Okamura, at Jeju Island, Korea: growth and maturation. Korean J. Fish. Aquat. Sci. 43:63-68. https://doi.org/10.5657/kfas.2010.43.1.063
  19. Kamei Y and CK Tsang. 2003. Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. Int. J. Devel. Neurosci. 21:255-262. https://doi.org/10.1016/S0736-5748(03)00068-6
  20. Kang J, M Khan, N Park, J Cho, M Lee, H Fujii and Y Hong. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J. Ethnopharmacol. 116:187-190. https://doi.org/10.1016/j.jep.2007.10.032
  21. Kim EA, SY Kim, JS Kim, JY Oh, HS Kim, WJ Yoon, DH Kang and SJ Heo. 2019. Tuberatolide B isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and NF-${\kappa}B$ signaling pathway in RAW264.7 cells and zebrafish model. J. Funct. Food 52:109-115. https://doi.org/10.1016/j.jff.2018.10.030
  22. Kim SH, DS Choi, Y Athukorala, YJ Jeon, M Senevirathne and CK Rha. 2007. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. J. Food. Sci. Nutr. 12:65-73.
  23. Manzoor Z, VB Mathema, DB Chae, ES Yoo, HK Kang, JW Hyun, NH Lee, MH Ko and YS Koh. 2014. Extracts of the seaweed Sargassum macrocarpum inhibit the CpG -induced inflammatory response by attenuating the NF-${\kappa}B$ pathway. Food Sci. Biotechnol. 23:293-297. https://doi.org/10.1007/s10068-014-0041-4
  24. Murase N and H Kito. 1998. Growth and maturation of Sargassum macrocarpum C. Agardh in Fukawa Bay, the Sea of Japan. Fish. Sci. 64:393-396. https://doi.org/10.2331/fishsci.64.393
  25. Murase N, H Kito, Y Mizukami and M Maegawa. 2000a. Productivity of a Sargassum macrocarpum (Fucales, Phaeophyta) population in Fukawa Bay, Sea of Japan. Fish. Sci. 66:270-277. https://doi.org/10.1046/j.1444-2906.2000.00044.x
  26. Murase N, H Kito, Y Mizukami and M Maegawa. 2000b. Relationships between critical photon irradiance for growth and daily compensation point of juvenile Sargassum macrocarpum. Fish. Sci. 66:1032-1038. https://doi.org/10.1046/j.1444-2906.2000.00165.x
  27. Murase N. 2001. Ecological study of Sargassum macrocarpum C. Agardh (Fucales, Phaeophyta). J. Shimonoseki Univ. Fish. 49:131-212.
  28. Oak JH and IK Lee. 2005. Taxonomy of the Genus Sargassum (Fucales, Phaeophyceae) from Korea I. Subgenus Bactrophycus Section Teretia. Algae 20:77-90. https://doi.org/10.4490/ALGAE.2005.20.2.077
  29. Oak JH and IK Lee. 2006. Taxonomy of the Genus Sargassum (Fucales, Phaeophyceae) from Korea II. subgenus Bactrophycus section Halochloa and Repentia. Algae 21:393-405. https://doi.org/10.4490/ALGAE.2006.21.4.393
  30. Pang SJ, F Liu, TF Shan, SQ Gao and ZH Zhan. 2009. Cultivation of the brown alga Sargassum horneri: sexual reproduction and seedling production in tank culture under reduced solar irradiance in ambient temperature. J. Appl. Phycol. 21:413-422. https://doi.org/10.1007/s10811-008-9386-5
  31. Rietema H. 1982. Effects of photoperiod and temperature on macrothallus initiation in Dumontia contorta (Rhodophyta). Mar. Ecol. Progr. Ser. 8:187-196. https://doi.org/10.3354/meps008187
  32. Uchida T. 1993. The life cycle of Sargassum horneri (Phaeophyta) in laboratory culture. J. Phycol. 29:231-235. https://doi.org/10.1111/j.0022-3646.1993.00231.x
  33. Umezaki I. 1983. Ecological studies of Sargassum miyabei Yendo in Maizuru Bay, Japan Sea. Bull. Jap. Soc. Sci. Fish. 49:1825-1834. https://doi.org/10.2331/suisan.49.1825
  34. Wernberg T and MS Thomsen. 2005. The effect of wave exposure on the morphology of Ecklonia radiata. Aquat. Bot. 83:61-70. https://doi.org/10.1016/j.aquabot.2005.05.007
  35. Wright JT, SL Williams and MN Dethier. 2004. No zone is always greener: variation in the performance of Fucus gardneri embryos, juveniles and adults across tidal zone and season. Mar. Biol. 145:1061-1073. https://doi.org/10.1007/s00227-004-1399-2
  36. Yende SR, UN Harle and BB Chaugule. 2014. Therapeutic potential and health benefits of Sargassum species. Pharmacogn. Rev. 8:1. https://doi.org/10.4103/0973-7847.125514
  37. Yoshida G and H Shimabukuro. 2017. Seasonal population dynamics of Sargassum fusiforme (Fucales, Phaeophyta), Suo-Oshima Is., Set Inland Sea, Japan-development processes of a stand characterized by high density and productivity. J. Appl. Phycol. 29:639-648. https://doi.org/10.1007/s10811-016-0951-z
  38. Yoshida G, K Yoshikawa and T Terawaki. 2001. Growth and maturation of two populations of Sargassum horneri (Fucales, Phaeophyta) in Hiroshima Bay, the Seto Inland Sea. Fish. Sci. 67:1023-1029. https://doi.org/10.1046/j.1444-2906.2001.00357.x
  39. Yoshida T, T Sawada and M Higaki. 1963. Sargassum vegetation growing in the Sea around Tsuyazaki, North Kyushu, Japan. Pac. Sci. 17:135-144.
  40. Zandi K, S Ahmadzadeh, S Tajbakhsh, Z Rastian, F Yousefi, F Farshadpour and K Sartavi. 2010. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines. Eur. Rev. Med. Pharmacol. Sci. 14:669-673.