DOI QR코드

DOI QR Code

Analysis of functional habitat groups and community stability of benthic macroinvertebrates before and after Yeongju Dam completion in Korea

영주댐 준공 전후 저서성대형무척추동물의 서식기능군 및 군집안정성 분석

  • Jo, Myeong Ho (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Lee, Mi Jin (Korea Institute of Arboretum Management, Baekdudaegan National Arboretum) ;
  • Seo, Eul Won (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Lee, Jong Eun (Department of Biological Sciences and Biotechnology, Andong National University)
  • 조명호 (안동대학교 생명공학부) ;
  • 이미진 (한국수목원관리원 국립백두대간수목원) ;
  • 서을원 (안동대학교 생명공학부) ;
  • 이종은 (안동대학교 생명공학부)
  • Received : 2019.09.30
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

This study was conducted to investigate the environmental impact of the construction of the Yeongju Dam, located near the upper stream of the Nakdong River, on benthic macroinvertebrates. The investigation was conducted four times from 2015 to 2016 and the composition of the benthic macroinvertebrate fauna from the four surveyed sites was compared. After the dam construction, the number of benthic macroinvertebrate species decreased and the species composition ratio of the E.P.T taxa(Ephemeroptera, Plecoptera, and Trichoptera) decreased, which favored the previous environment and the large riverbed structure. However, the species composition ratio of the O.C.H taxa (Odonata, Coleoptera, and Hemiptera), which favored the reservoir environment, increased. For the pattern of changes in the functional habitat groups, the proportion of 'Clinger(CL)' taxa decreased and the 'Burrower(BU), Climber(CB), Sprawler(SP), Swimmer(SW)' taxa increased in all surveys after the dam construction. A cluster stability comparison showed that the 'Stability Group II' species of St.2 and St.3 showed a drastic decrease. The average Benthic Macroinvertebrate Index(BMI) of all the survey sites in 2016 was lower than that in 2015. This research confirmed the temporal and spatial changes in the habitat type and community structure of the benthic macroinvertebrates resulting from the dam construction.

낙동강 상류의 지류이며, 국내 대표적인 모래하천으로 잘 알려진 내성천 상류에 위치한 영주댐을 기준으로 하류 지점과 상류 지점을 선정하여, 2015년과 2016년동안 담수화에 따른 저서성대형무척추동물의 서식유형 및 군집구조의 변화 양상에 대한 분석을 실시하였다. 조사는 댐의 건설이 저서성대형무척추동물에 미치는 영향을 파악하고자 2015년, 2016년 총 4회에 걸쳐 실시하였다. 조사 결과, 댐에 의한 내성천의 담수화가 2016년 7월부터 진행됨에 따라 전체 출현 종수가 감소하였다. 특히 댐에서 가까운 상류 지점인 St.2와 St.3에서 감소 폭이 크게 나타났다. 유수성 환경과 입자가 큰 하상구조를 선호하는 E.P.T. 분류군의 종조성 비율은 감소하고, 정수역 환경을 선호하는 O.C.H. 분류군의 종조성 비율은 증가한 것으로 확인되었다. 서식기능군은 담수가 진행됨에 따라 붙는무리(CL; Clinger)의 종수 및 개체수 비율이 모든 지점에서 감소하였고, 굴파는무리(BU; Burrower), 기어오르는무리(CB; Climber), 기는무리(SP; Sprawler), 헤엄치는 무리(SW; Swimmer)의 종수 및 개체수 비율이 증가하였다. 또한 서식환경 변화에 따른 군집안 정성을 비교 결과, group I (높은 저항력, 높은 회복력)의 종분포는 크게 변화하지 않았으나 St.2와 St.3에서 group II(높은 저항력, 낮은 회복력)의 종 출현율이 현저히 감소하는 것으로 나타났다. 본 연구를 통해 댐 건설로 인해 담수가 진행됨에 따라 저서환경변화와 유속에 영향을 직접적으로 받는 저서성대형 무척추동물의 서식유형과 군집구조에 대한 시간적, 공간적 변화 양상을 확인할 수 있었다. 또한 향후 내성천 수계의 지속적인 모니터링을 통해 댐 건설과 이로 인한 담수의 진행 정도에 따라 저서성대형무척추동물 군집구조 변화와 서식기능군은 물론 섭식기능군의 변화 양상에 대한 체계적인 연구가 요구된다. 그리고 댐 조성이 하천생태계 저서성대형무척추동물의 분포 및 서식양태 변화에 미치는 영향에 대한 추가적인 조사 및 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Bass D. 1992. Colonization and succession of benthic macroinvertebrates in Arcadia Lake, a South-Central USA reservoir. Hydrobiologia 242:123-131. https://doi.org/10.1007/BF00018068
  2. Baumgartne DM, K Mortl and O Rothhaupt. 2008. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. pp. 97-107. In Ecological Effects of Water-Level Fluctuations in Lakes. Springer, Dordrecht.
  3. Davis SD, SW Golladay, G Vellidis and CM Pringle. 2003. Macroinvertebrate biomonitoring in intermittent coastal plain stream impacted by animal agriculture. J. Environ. Qual. 7:1036-1043.
  4. Doeg TJ and JD Koehn. 1994. Effects of draining and desiltinga small weir on downstream fish and macroinvertebrates. Regul. Rivers-Res. Manage. 9:263-277. https://doi.org/10.1002/rrr.3450090407
  5. Forsyth DJ. 1978. Benthic macroinvertebrates in seven New Zealand lakes. N. Z. J. Mar. Freshw. Res. 12:41-49. https://doi.org/10.1080/00288330.1978.9515721
  6. Hynes HBN. 1963. The Biology of Polluted Waters. Liverpool Univ. Press, Liverpool.
  7. Kehde PM and JL Wilhm. 1972. The effects of grazing by snails on community structure of periphyton in laboratory streams. Am. Midl. Nat. 16:8-24. https://doi.org/10.2307/2423878
  8. Kong DS, YJ Park and YR Jeon. 2018. Revision of ecological score of benthic macroinvertebrates community in Korea. J. Korean. Soc. Water Environ. 34:251-269. https://doi.org/10.15681/KSWE.2018.34.3.251
  9. Kwon HY, MJ Lee, JY Park and JE Lee. 2014. The influence of Gunwi dam construction on community fluctuations of benthic macroinvertebrates. J. Environ. Sci. Inter. 23:807-817. https://doi.org/10.5322/JESI.2014.5.807
  10. Kwon SJ, YC Jeon and JH Park. 2013. Checklist of Organisms in Korea: 7. Benthic Macroinvertebrates. Eco and Nature, Seoul.
  11. Lenat DR. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. N. Am. Benthol. Soc. 11:222-233. https://doi.org/10.2307/1467422
  12. Margalef R. 1958. Information Theory in Ecology. Gen. Syst. 35: 36-71.
  13. McNaughton SJ. 1967. Relationship among functional properties of California Grassland. Nature 216:168-169. https://doi.org/10.1038/216168b0
  14. Merritt RW, KW Cummins and MB Berg. 2008. An Introduction to the Aquatic Insects of North America. 4th eds. Kendall/Hunt Publishing Corporation. p. 862.
  15. Morene P and M Callisto. 2006. Benthic macroinvertebrates in the water-shed of an urban reservoir in southeastern Brazil. Hydrobiologia 560:311-321. https://doi.org/10.1007/s10750-005-0869-y
  16. Nalepa TF, DJ Hartson, DL Fanslow, GA Lang and SJ Lozano. 1998. Declines in benthic macroinvertebrate populations in southern Lake Michigan, 1980-1993. Can. J. Fish. Aquat. Sci. 55:2402-2413. https://doi.org/10.1139/f98-112
  17. Nalepa TF, GA Lang, DL Fanslow. 2000. Trends in benthic macroinvertebrate populations in southern Lake Michigan. Verein. Limnol. 27:2540-2545.
  18. National Institute of Environmental Research. 2015. Survey and Evaluation Method for River and Stream Ecosystem Health Assessment. Ministry of Environment, Sejong, Korea.
  19. Petiz DG. 2003. Macroinvertebrate biomonitoring as an indicator of water quality: Status report for pipestone Creek. Pip. Nat. Mon 13:1989-2002.
  20. Pielou EC. 1975. Ecological Diversity. John Wiley, New York. p. 165.
  21. Ro TH and DJ Chun. 2004. Functional feeding group categorization of Korean immature aquatic insects and community stability analysis. Korean J. Limnol. 11:137-148.
  22. Shannon CE and W Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana. p. 117.
  23. Sin HS, O Mitamura, SJ Kim and JK Choi. 2008. Characters of Musim stream by surveyed sites based on EPT-group of aquatic insects. Korean J. Environ. Ecol. 6:420-426.
  24. Song KL. 1995. Korea Leech Classification. Korea University, Seoul. p. 57.
  25. Weatherhead MA and MR James. 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the lit-toral zone of nine New Zealand lakes. Hydrobiologia 462:115-129. https://doi.org/10.1023/A:1013178016080
  26. Won DH, SJ Kwon and YC Jeon. 2005. Aquatic Insect of Korea. Korea Ecosystem Service Press, Seoul.
  27. Yoon IB. 1995. Explanatory Diagram of Aquatic Insects. Jeongheangsa, Seoul.