Fig. 1. Image showing the FSW process.
Fig. 5. Hardness profiles for the FSW and MIG specimen.
Fig. 2. (a) Welded plates showing the locations of the extracted specimens for (b) tensile test and (c) hardness measurement.
Fig. 3. (a) Low-magnification optical micrographs and (b) high-magnification optical micrographs for the FSW welded parts.
Fig. 4. (a) Low-magnification optical micrographs and (b) high-magnification optical micrographs for the FSW welded parts.
Fig. 6. (a) Measured stress-strain curves for the FSW specimens and unwelded parent material. (b) yield stress and tensile stress vs. rotation per minute.
Table 1. Summray of yield stress, tensile stress, elongation for the FSW specimens, MIG specimen and parent material.
참고문헌
- G. Liu, L. E. Murr. C-S. Niou, J. C. McClure & F. R. Vega. (1997). Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripta Materialia, 37, 355-361. https://doi.org/10.1016/S1359-6462(97)00093-6
- W. M. Thomas & E. D. Nicholas. (1997). Friction stir welding for the transportation industries. Materials & Design, 18, 269-273. https://doi.org/10.1016/S0261-3069(97)00062-9
- R. Nandan. T. DebRoy & H. K. D. H. Bhadeshia. (2008). Recent advances in friction-stir welding-process, weldment structure and properties. Progress in Materials Science, 53, 980-1023. https://doi.org/10.1016/j.pmatsci.2008.05.001
- B. Heinz & B. Skrotzki. (2002). Characterization of a Friction-stir-welded Aluminum Alloy 6013. Metall. Mater. Trans. B, 33B, 489-498.
- A. P. Reynods, W. Tang, T. Gnaupel-Herold & H. Prask. (2003). Structure, properties and residual stress of 304 L stainless steel friction stir welds. Scripta Mat., 48, 1289-1294. https://doi.org/10.1016/S1359-6462(03)00024-1
- Hideshi Ohba, Chiaki Ueda & Kouji Agatsuma. (2001). Innovative Vehicle-the "A-train". Hitachi Review, 50, 130-133.
- W. Woo, G. B. An, E. J. Kingston, A. T. DeWald, D. J. Smith & M. R. Hill. (2013). Through-thickness distributions of residual stresses in two extreme heat-input thick welds: A neutron diffraction, contour method and deep hole drilling study. Acta Materialia, 61, 3564-3574. https://doi.org/10.1016/j.actamat.2013.02.034
- J. H. Cho & S. H. Ko. (2019). A Study on the Prediction of Welding Flaw Using Neural Network. J. Digital Convergence, 17, 217-223.
- C. K. Chun, W. S. Chang, C. Y. Kang, Y. J. Kwon & D. H. Park. (2009). Friction Stir Welding Technology for Aluminum Rolling Stocks. J. Kor. Weld. & Join. 27, 16-20. https://doi.org/10.5781/KWJS.2009.27.5.016
- H Yamamoto , S Harada , T Ueyama & S Ogawa. (2009). Development of low-frequency pulsed MIG welding for aluminium alloys. Welding International, 6, 580-583. https://doi.org/10.1080/09507119209548246