DOI QR코드

DOI QR Code

Wakes of two inline cylinders at a low Reynolds number

  • Zafar, Farhan (Institute for Turbulence-Noise-Vibration Interaction and Control Harbin Institute of Technology (Shenzhen)) ;
  • Alam, Md. Mahbub (Institute for Turbulence-Noise-Vibration Interaction and Control Harbin Institute of Technology (Shenzhen)) ;
  • Muhammad, Zaka (Institute for Turbulence-Noise-Vibration Interaction and Control Harbin Institute of Technology (Shenzhen)) ;
  • Islam, Md. (Department of Mechanical Engineering, Khalifa University of Science and Technology)
  • 투고 : 2017.11.14
  • 심사 : 2019.01.13
  • 발행 : 2019.07.25

초록

The effect of vortex impingement on the fluid dynamics around a cylinder submerged in the wake of another of different diameters is numerically investigated at a Reynolds number Re = 200. While the diameter (D) of the downstream cylinder is fixed, impinging vortices are produced from the upstream cylinder diameter (d) varied as d/D = 0.24, 0.4, 0.6, 0.8 and 1.0, with a spacing ratio L=5.5d, where L is the distance between the center of the upstream cylinder to the front stagnation point of the downstream cylinder. Two-dimensional simulations are carried out using the finite volume method. Fluid forces acting on the two cylinders are correlated with impinging vortices, vortex shedding, and wake structure. Different facets of wake formation, wake structure, and flow separation and their connections to fluid forces are discussed.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Council of Shenzhen

참고문헌

  1. Alam, M.M. (2014), "The aerodynamics of a cylinder submerged in the wake of another", J. Fluid. Struct., 51, 393-400. https://doi.org/10.1016/j.jfluidstructs.2014.08.003.
  2. Alam, M.M. (2014), "The aerodynamics of a cylinder submerged in the wake of another". J. Fluid. Struct., 51, 393-400. https://doi.org/10.1016/j.jfluidstructs.2014.08.003.
  3. Alam, M.M. (2016), "Lift forces induced by phase lag between the vortex sheddings from two tandem bluff bodies", J. Fluid. Struct., 65, 217-237. https://doi.org/10.1016/j.jfluidstructs.2016.05.008.
  4. Alam, M.M., Moriya, M., Takai, K. and Sakamoto, H. (2002), "Suppression of fluid forces acting on two square prisms in a tandem arrangement by passive control of flow", J. Fluid. Struct., 16, 1073-1092. https://doi.org/10.1006/jfls.2002.0458.
  5. Alam, M.M., Moriya, M., Takai, K. and Sakamoto, H. (2003a), "Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number", J. Wind Eng. Ind. Aerod., 91(1-2), 139-154. https://doi.org/10.1016/S0167-6105(02)00341-0.
  6. Alam, M.M., Sakamoto, H. and Moriya, M. (2003b), "Reduction of fluid forces acting on a single circular cylinder and two circular cylinders by using tripping rods", J. Fluid. Struct., 18(3-4), 347-366. https://doi.org/10.1016/j.jfluidstructs.2003.07.011.
  7. Alam, M.M., Sakamoto, H. and Zhou, Y. (2006), "Effect of a T-shaped plate on reduction in fluid forces on two tandem cylinders in a cross-flow", J. Wind Eng. Ind. Aerod., 94(7), 525-551. https://doi.org/10.1016/j.jweia.2006.01.018.
  8. Alam, M.M. and Zhou, Y. (2007), "Turbulent wake of an inclined cylinder with water running", J. Fluid Mech., 589, 261-303. https://doi.org/10.1017/S0022112007007720
  9. Alam, M.M. and Zhou, Y. (2008), "Strouhal numbers, forces and flow structures around two tandem cylinders of different diameters", J. Fluid. Struct., 24(4), 505-526. https://doi.org/10.1016/j.jfluidstructs.2007.10.001.
  10. Alam, M.M., Zhou, Y. and Wang, X.W. (2011), "The wake of two side-by-side square cylinders", J. Fluid Mech., 669, 432-471. https://doi.org/10.1017/S0022112010005288.
  11. Bai, H. and Alam, M.M. (2018), "Dependence of square cylinder wake on Reynolds number", Phys. Fluids, 30(1), https://doi.org/10.1063/1.4996945.
  12. Berger, E. and Wille, R. (1972), "Periodic flow phenomena", Annu. Rev. Fluid Mech., 4, 313-340. https://doi.org/10.1146/annurev.fl.04.010172.001525.
  13. Bloor, M.S. (1964), "The transition to turbulence in the wake of a circular cylinder", J. Fluid Mech., 19(2), 290-304. https://doi.org/10.1017/S0022112064000726.
  14. Bouak, F. and Lemay, J. (1998), "Passive control of the aerodynamic forces acting on a circular cylinder", Exp. Therm Fluid Sci., 16(1-2), 112-121. https://doi.org/10.1016/S0894-1777(97)10010-3.
  15. Chen, Y.N., Yang, S.C. and Yang, J.Y. (1999), "Implicit weighted essentially non-oscillatory schemes for the incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 31, 747-765. https://doi.org/10.1002/(SICI)1097-0363(19991030)31:4<747.
  16. Ding, H., Shu, C., Yeo, K.S. and Xu, D. (2007), "Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods", Int. J. Numer. Meth. Fl., 53(2), 305-332. https://doi.org/10.1002/fld.1281.
  17. Gao, Y., Etienne, S., Wang, X. and Tan, S. (2014), "Experimental study on the flow around two tandem cylinders with unequal diameters", J. Ocean Univ. China, 13(5), 761-770. https://doi.org/10.1007/s11802-014-2377-z
  18. Gerrard, J.H. (1966), "The mechanics of the formation region of vortices behind bluff bodies", J. Fluid Mech., 25(2), 401-413. https://doi.org/10.1017/S0022112066001721.
  19. Gresho, P.M., Chan, S.T., Lee, R.L. and Upson, C.D. (1984), "A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations. Part 2: Applications", Int. J. Numer. Meth. Fl., 4(7), 619-640. https://doi.org/10.1002/fld.1650040703.
  20. Igarashi, T. (1982), "Characteristics of a flow around two circular cylinders of different diameters arranged in tandem". Bulletin of JSME., 25, 349-357. https://doi.org/10.1299/jsme1958.25.349.
  21. Igarashi, T. (1997), "Drag reduction of a square prism by flow control using a small rod", J. Wind Eng. Ind. Aerod., 69-71, 141-153. https://doi.org/10.1016/S0167-6105(97)00150-5.
  22. Kuo, C.H., Chiou, L.C. and Chen, C.C. (2007), "Wake flow pattern modified by small control cylinders at low Reynolds number", J. Fluid. Struct., 23(6), 938-956. https://doi.org/10.1016/j.jfluidstructs.2007.01.002.
  23. Linnick, M.N. and Fasel, H.F. (2005), "A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains", J. Comput. Phys., 204(1), 157-192. https://doi.org/10.1016/j.jcp.2004.09.017.
  24. Liu, C., Zheng, X. and Sung, C.H. (1998), "Preconditioned multigrid methods for unsteady incompressible flows", J. Comput. Phys., 139(1), 35-57. https://doi.org/10.1006/jcph.1997.5859.
  25. Ma, H.L. and Kuo, C.H. (2016), "Control of boundary layer flow and lock-on of wake behind a circular cylinder with a normal slit", Eur. J. Mech. - B/Fluids, 59, 99-114. https://doi.org/10.1016/j.euromechflu.2016.05.001.
  26. Mahir, N. and Altac, Z. (2017), "Numerical investigation of flow and heat transfer characteristics of two tandem circular cylinders of different diameters", Heat Transfer Eng., 38, 1367-1381. https://doi.org/10.1080/01457632.2016.1255027.
  27. Mahir, N. and Altac, Z. (2008), "Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements", Int. J. Heat Fluid Fl, 29(5), 1309-1318. https://doi.org/10.1016/j.ijheatfluidflow.2008.05.001.
  28. Meneghini, J.R., Saltara, F., Siqueira, C.L.R. and Ferrari, J.A. (2001), "Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements", J. Fluid. Struct., 15(2), 327-350. https://doi.org/10.1006/jfls.2000.0343
  29. Mittal, S., Prakash Singh, S., Kumar, B. and Kumar, R. (2006), "Flow past bluff bodies: effect of blockage", Int. J. Comp. Fluid Dyn., 20, 163-173. https://doi.org/10.1080/10618560600789735
  30. Norberg, C. (2003), "Fluctuating lift on a circular cylinder: review and new measurements", J. Fluid. Struct., 17(1), 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3.
  31. Prasad, A. and Williamson, C.H.K. (1997), "A method for the reduction of bluff body drag", J. Wind Eng. Ind. Aerod., 69-71, 155-167. https://doi.org/10.1016/S0167-6105(97)00151-7.
  32. Prasanth, T.K. and Mittal, S. (2008), "Effect of blockage on free vibration of a circular cylinder at low Re", Int. J. Numer. Meth. Fl., 58(10), 1063-1080. https://doi.org/10.1002/fld.1771.
  33. Qin, B., Alam, M.M. and Zhou, Y. (2017), "Two tandem cylinders of different diameters in cross-flow: flow-induced vibration", J. Fluid Mech., 829, 621-658. https://doi.org/10.1017/jfm.2017.510.
  34. Qu, L., Norberg, C., Davidson, L., Peng, S.H. and Wang, F. (2013), "Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200", J. Fluid. Struct., 39, 347-370. https://doi.org/10.1016/j.jfluidstructs.2013.02.007.
  35. Roshko, A. (1954), "On the drag and shedding frequency of bluff body", NACA TN 3169.
  36. Sakamoto, H. and Haniu, H. (1988), "Effect of free-stream turbulence on characteristics of fluctuating forces acting on two square prisms in tandem arrangement", J. Fluid. Eng., 110(2), 140-146. doi:10.1115/1.3243526.
  37. Sakamoto, H. and Haniu, H. (1994), "Optimum suppression of fluid forces acting on a circular cylinder", J. Fluid. Eng., 116(2), 221-227. doi:10.1115/1.2910258.
  38. Schlichting, H. and Gersten, K. (2003), Boundary layer theory. Springer Berlin.
  39. Tsutsui, T. and Igarashi, T. (2002), "Drag reduction of a circular cylinder in an air-stream", J. Wind Eng. Ind. Aerod., 90(4-5), 527-541. https://doi.org/10.1016/S0167-6105(01)00199-4.
  40. Wang, L., Alam, M.M. and Zhou, Y. (2017), "Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics", J. Fluid Mech., 836, 5-42. https://doi.org/10.1017/jfm.2017.735.
  41. Williamson, C.H.K. (1988), "Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder", Phys. Fluids, 31(10), 2742-2744. https://doi.org/10.1063/1.866978.
  42. Zafar, F. and Alam, M.M. (2018), "A low Reynolds number flow and heat transfer topology of a cylinder in a wake", Phys. Fluids, 30(8), https://doi.org/10.1063/1.5035105.
  43. Zdravkovich, M.M. (1987), "The effects of interference between circular cylinders in cross flow", J. Fluid. Struct., 1(2), 239-261. https://doi.org/10.1016/S0889-9746(87)90355-0.
  44. Zhang, P.F., Wang, J.J. and Huang, L.X. (2006), "Numerical simulation of flow around cylinder with an upstream rod in tandem at low Reynolds numbers", Appl. Ocean Res., 28(3), 183-192. https://doi.org/10.1016/j.apor.2006.08.003.
  45. Zheng, Q. and Alam, M.M. (2017), "Intrinsic features of flow past three square prisms in side-by-side arrangement", J. Fluid Mech., 826, 996-1033. https://doi.org/10.1017/jfm.2017.378

피인용 문헌

  1. Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis vol.31, pp.6, 2019, https://doi.org/10.12989/was.2020.31.6.495