DOI QR코드

DOI QR Code

Vertical axis wind turbine types, efficiencies, and structural stability - A Review

  • Rehman, Shafiqur (Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals) ;
  • Rafique, Muhammad M. (Faculty of Mechanical Engineering, Technische Universitat Bergakademie) ;
  • Alam, Md. Mahbub (Institute for Turbulence-Noise-Vibration Interaction and Control, Harbin Institute of Technology (Shenzhen)) ;
  • Alhems, Luai M. (Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals)
  • Received : 2018.11.14
  • Accepted : 2019.01.13
  • Published : 2019.07.25

Abstract

Much advancement has been made in wind power due to modern technological developments. The wind energy technology is the world's fastest-growing energy option. More power can be generated from wind energy by the use of new design and techniques of wind energy machines. The geographical areas with suitable wind speed are more favorable and preferred for wind power deployment over other sources of energy generation. Today's wind turbines are mainly the horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). HAWTs are commercially available in various sizes starting from a few kilowatts to multi-megawatts and are suitable for almost all applications, including both onshore and offshore deployment. On the other hand, VAWTs finds their places in small and residential wind applications. The objective of the present work is to review the technological development, available sizes, efficiencies, structural types, and structural stability of VAWTs. Structural stability and efficiencies of the VAWTS are found to be dependent on the structural shape and size.

Keywords

Acknowledgement

Supported by : King Fahd University of Petroleum & Minerals (KFUPM)

References

  1. Alam, M.M., Rehman, S., Meyer, J. and Al-Hadhrami, L.M. (2014), "Extraction of the inherent nature of wind using wavelets", Energy Sustainable Dev., 22, 34-47. http://hdl.handle.net/2263/44604. https://doi.org/10.1016/j.esd.2014.02.004
  2. Alam, M.M., Rehman, S., Meyer, J. and Al-Hadhrami, L.M. (2011), "Review of 600kw to 2500kw sized wind turbines and optimization of hub height for maximum wind energy yield realization", Renew. Sust. Energ. Rev., 15(1), 3839-3849. https://doi.org/10.1016/j.rser.2011.07.004
  3. Al-Hassan, A.Y. and Hill, D.R. (1986), Islamic Technology: An Illustrated History, Cambridge University Press.
  4. Aslam, B.M.M., Hayat, N.F., Ahmed, U.A., Zain, J., Rehan, S., and Hussain, Z. (2012), "Vertical axis wind turbine - A review of various configurations and design techniques", Renew. Sust. Energ. Rev., 16(4), 1926-1939. https://doi.org/10.1016/j.rser.2011.12.004.
  5. Ashwill, T.D.; Sutherland, H.J. and Berg, D.E. (2012), "A retrospective of VAWT technology", Office of Scientific & Technical Information Technical Reports.
  6. Bagiorgas, H.S., Mihalakakou, G., Rehman S. and Al-Hadhrami, L.M. (2013), "Wind power potential assessment for three buoys data collection stations in Ionian Sea using weibull distribution function", Int. J. Green Energy, 13(7), 703-714. https://doi.org/10.1080/15435075.2014.896258.
  7. Bagiorgas, H.S., Mihalakakou, G., Rehman, S. and Al-Hadhrami, L.M. (2012a), "Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas", J. Earth Syst. Sci., 121(4), 975-987. https://doi.org/10.1007/s12040-012-0203-9
  8. Bagiorgas, H.S., Mihalakakou, G., Rehman, S. and Al-Hadhrami, L.M. (2012b), "Wind power potential assessment for seven buoys data collection stations in Aegean Sea using weibull distribution function", J. Renew. Sust. Energ., 4(1), 013119-013134. https://doi.org/10.1063/1.3688030.
  9. Bagiorgas, H.S., Mihalakakou, G., Rehman, S. and Al-Hadhrami, L.M. (2011), "Weibull parameters estimation using four different methods and most energy carrying wind speed analysis", Int. J. Green Energy, 8(5), 529-554. https://doi.org/10.1080/15435075.2011.588767.
  10. Bahaj, A.S.M.L. and James, P.A.B. (2007), "Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings", Energ. Buildings, 39(2), 154-165. https://doi.org/10.1016/j.enbuild.2006.06.001.
  11. Baker, J.R. (1983), "Features to aid or enable self starting of fixed pitch low solidity vertical axis wind turbines", J. Wind Eng. Ind. Aerod., 15(1-3), 369-380. https://doi.org/10.1016/0167-6105(83)90206-4.
  12. Bergeles, G., Michos, A. and Athanassiadis, N. (1991), "Velocity vector and turbulence in the symmetry plane of a Darrieus wind generator", J. Wind Eng. Ind. Aerod., 37(1), 87-101. https://doi.org/10.1016/0167-6105(91)90007-J.
  13. Baseer, M.A., Meyer, J.P., Rehman, S. and Alam, M.M. (2017), "Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters", Renew. Energ., 102, 35-49. https://doi.org/10.1016/j.renene.2016.10.040.
  14. Baseer, M. A., Meyer, J. P., Rehman, S., Alam, M.M., Al-Hadhrami, L.M. and Lashin, A. (2016), "Performance evaluation of cup-anemometers and wind speed characteristics analysis", Renew. Energ., 86(2), 733-744. https://doi.org/10.1016/j.renene.2015.08.062.
  15. Baseer, M.A., Meyer, J.P., Alam, M.M. and Rehman, S. (2015), "Wind speed and power characteristics for Jubail industrial city, Saudi Arabia", Renew. Sust. Energ. Rev., 52, 1193-1204. https://doi.org/10.1016/j.rser.2015.07.109.
  16. Bassyouni, M., Saud, A.G., Javaid, U., Awais, M., Rehman, S., Abdel-Hamid, S.M.S., Abdel-Aziz, M.H., Abouel-Kasem, A. and Shafeek, H. (2015), "Assessment and analysis of wind power resource using Weibull parameters", Energy Explor. Exploit., 33(1), 105-122. https://doi.org/10.1260/0144-5987.33.1.105.
  17. Bishop, J.D.K. and Amaratunga, G.A.J. (2008), "Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados", Energ. Convers. Manage., 49(6), 1652-1661. https://doi.org/10.1016/j.enconman.2007.11.008.
  18. Brahimi, M.T. and Paraschivoiu, I. (1995), "Darrieus rotor aerodynamics in turbulent wind", J. Sol. Energy Eng., 117(2), 128-136. doi:10.1115/1.2870839.
  19. Brownstein, I.D., Kinzel, M. and Dabiri, J.O. (2016), "Performance enhancement of downstream vertical-axis wind turbines", J. Renew. Sust. Energ., 8(5), 053306. https://doi.org/10.1063/1.4964311.
  20. Brown, K.A. and Brooks, R. (2016), "Design and analysis of a vertical axis thermoplastic composite wind turbine blade", Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, United Kingdom.
  21. Buchner, A.J., Soria, J., Honnery, D. and Smits, A.J. (2018), "Dynamic stall in vertical axis wind turbines: Scaling and topological considerations", J. Fluid Mech., 841, 746-66. https://doi.org/10.1017/jfm.2018.112.
  22. Buchner, A.J., Lohry, M.W., Martinelli, L., Soria, J. and Smits, A. J. (2015), "Dynamic stall in vertical axis wind turbines: Comparing experiments and computations", J. Wind Eng. Ind. Aerod., 146, 163-171. https://doi.org/10.1016/j.jweia.2015.09.001.
  23. Chaichana, T. and Chaitep, S. (2010), "Wind power potential and characteristic analysis of Chiang Mai, Thailand", J. Mech. Sci. Tech., 24(7), 1475-1479. https://doi.org/10.1007/s12206-010-0415-3
  24. Cheung, C.K. (2011), "Small Wind Turbine Blade Sensor for Condition Based Maintenance", Faculty of California Polytechnic University, San Luis Obispo.
  25. Chougle, P.D. (2015), "Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil", Department of Civil Engineering, Aalborg University.
  26. Dabiri, J.O. (2011), "Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays". J. Renew.Sust. Energ., 3(4), 043104. https://doi.org/10.1063/1.3608170.
  27. Darrieus, G. (1931), US Patent No. 1835081.
  28. Debnath, B.K., Biswas, A. and Gupta, R. (2009), "Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap conditions". J. Renew. Sust. Energ., 1(3), 033110. https://doi.org/10.1063/1.3152431.
  29. Drees, H. (1978), "The cycloturbine and its potential for broad application", Proceedings of the 2nd international symposium on wind energy systems. Paper presented at the 2nd international symposium on wind energy systems, Amsterdam.
  30. Dumitrascu, A.E., Lepadatescu, B., Dumitrascu, D.I., Nedelcu, A. and Ciobanu D.V. (2015), "Reliability estimation of parameters of helical wind turbine with vertical axis", The Scientific World J., 2015, 1-8. http://dx.doi.org/10.1155/2015/296762.
  31. Eriksson, S., Bernhoff, H. and Leijon, M. (2008), "Evaluation of different turbine concepts for wind power", Renew. Sust. Energ. Rev., 12(5), 1419-1434. https://doi.org/10.1016/j.rser.2006.05.017.
  32. Fung, K.T., Scheffler, R.L. and Stolpe, J. (1981). "Wind energy - A utility perspective", IEEE T. Power Apparatus Systems, PAS-100(3), 1176-1182. 10.1109/TPAS.1981.316586
  33. Galinos, C., Larsen, T.J., Madsen, H.A., Uwe, S. and Paulsen, U.S. (2016), "Vertical axis wind turbine design load cases investigation and comparison with horizontal axis wind turbine", Energy Procedia, 94, 319-328. https://doi.org/10.1016/j.egypro.2016.09.190.
  34. Gavalda, J., Massons, J. and Diaz, F. (1990), "Experimental study on a self-adapting Darrieus-Savonius wind machine", Sol. Wind Tech., 7(4), 457-461. https://doi.org/10.1016/0741-983X(90)90030-6.
  35. Giraud, F. and Salameh, Z.M. (2001), "Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage", IEEE T. Energy Conver., 16(1), 1-7. https://doi.org/10.1109/60.911395
  36. Gorelov, D.N. (2009), "Analogy between a flapping wing and a wind turbine with a vertical axis of revolution", J. Appl. Mech. Tech. Phys., 50(2), 297-299. https://doi.org/10.1007/s10808-009-0040-z
  37. Gorelov, D.N. and Krivospitsky, V.P. (2008), "Prospects for development of wind turbines with orthogonal rotor", Thermophy. Aeromech., 15(1), 153-157. https://doi.org/10.1134/S0869864308010149
  38. Graham, I.V.H.Z., Panther, C., Hubbell, M., Wilhelm, J.P., Angle, I.I.G.M. and Smith, J.E. (2009), "Airfoil selection for a straight bladed circulation controlled vertical axis wind turbine", Renewable and Alternative Energy Technologies, (48890), 579-584. doi:10.1115/ES2009-90343.
  39. Gupta, R. and Biswas, A. (2010), "Computational fluid dynamics analysis of a twisted three-bladed H-Darrieus rotor", J. Renew. Sust. Energ., 2(4), 043111. https://doi.org/10.1063/1.3483487.
  40. Himri, Y., Rehman, S., Himri, S., Mohammadi, K., Sahin, B. and Malik, A.S. (2016), "Investigation of wind resources in Timimoun, Algeria", Wind Eng., 40(3), 250-260. https://doi.org/10.1177/0309524X16645483
  41. Himri, Y., Rehman, S., Setiawan, A.A. and Himri, S. (2012), "Wind energy for rural areas of Algeria", Renew. Sust. Energ. Rev., 16(5), 2381-2385. https://doi.org/10.1016/j.rser.2012.01.055.
  42. Homicz, G.F. (1989), "VAWT Stochastic Loads Produced by Atmospheric Turbulence", J. Sol. Energy Eng., 111(4), 358-366. doi:10.1115/1.3268335.
  43. Howell, R., Qin, N., Edwards, J. and Durrani, N. (2010), "Wind tunnel and numerical study of a small vertical axis wind turbine", Renew. Energ., 35(2), 412-422. https://doi.org/10.1016/j.renene.2009.07.025.
  44. Islam, Md. S., Mohandes, M. and Rehman, S. (2017), "Vertical extrapolation of wind speed using artificial neural network hybrid system", Neural Comp. Appl., 28(8), 2351-2361. https://doi.org/10.1007/s00521-016-2373-x
  45. Islam, M., Amin, M.R., Ting, D.S.K. and Fartaj, A. (2007), "Aerodynamic factors affecting performance of straight-bladed vertical axis wind turbines", Energy Systems: Analysis, Thermodynamics and Sustainability, (43009), 331-341. doi:10.1115/IMECE2007-41346.
  46. Islam, M., Fartaj, A. and Ting, D.S.K. (2004), "Current utilization and future prospects of emerging renewable energy applications in Canada", Renew. Sust. Energ. Rev., 8(6), 493-519. https://doi.org/10.1016/j.rser.2003.12.006.
  47. Islam, M., Ting, D.S.K. and Fartaj, A. (2008), "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines", Renew. Sust. Energ. Rev., 12(4), 1087-1109. https://doi.org/10.1016/j.rser.2006.10.023.
  48. Khan, S. and Rehman, S. (2013), "Iterative non- deterministic algorithms in on-shore wind farm design: A brief survey", Renew. Sust. Energ. Rev., 19, 370-384. https://doi.org/10.1016/j.rser.2012.11.040.
  49. Kinzel, M., Mulligan, Q. and Dabiri, J.O. (2012), "Energy exchange in an array of vertical-axis wind turbines". J. Turbul., 13, N38. https://doi.org/10.1080/14685248.2012.712698.
  50. Kirke, B. (1998), "Evaluation of self-starting vertical axis wind turbines for stand-alone applications", PhD. Dissertation, Griffith University, Australia.
  51. Lack, C.A. (2010), "Urban wind turbines, faculty of mechanical engineering", PhD. Dissertation, Tallinn University of Technology, Tallinn.
  52. Loth, J.L. (1985), "Aerodynamic tower shake force analysis for VAWT", J. Sol. Energy Eng., 107(1), 45-49. doi:10.1115/1.3267652.
  53. Marini, M., Massardo, A. and Satta, A. (1992), "Performance of vertical axis wind turbines with different shapes", J. Wind Eng. Ind. Aerod., 39(1-3), 83-93. https://doi.org/10.1016/0167-6105(92)90535-I.
  54. McVicar, T.R., Roderick, M.L., Donohue, R.J., Li, L.T., Van Niel, T.G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N.M., Mescherskaya, A.V., Kruger, A.C., Rehman, S. and Dinpashoh, Y. (2012), "Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implication for evaporation", J. Hydrol., 416-417, 182-205. https://doi.org/10.1016/j.jhydrol.2011.10.024.
  55. Mertens, S., van Kuik, G. and van Bussel, G. (2003). "Performance of an H-Darrieus in the skewed flow on a roof", J. Sol. Energy Eng., 125(4), 433-440. doi:10.1115/1.1629309.
  56. Mohamed, M.H. (2012), "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes", Energy, 47(1), 522-530. https://doi.org/10.1016/j.energy.2012.08.044.
  57. Mohamed, M.H. (2013), "Impacts of solidity and hybrid system in small wind turbines performance", Energy, 57, 495-504. https://doi.org/10.1016/j.energy.2013.06.004.
  58. Mohamed, M.H. (2014), "Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines", Energy, 65, 596-604. https://doi.org/10.1016/j.energy.2013.11.031.
  59. Mohamed, M.H., Ali, A.M. and Hafiz, A.A. (2015), "CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter", Eng. Sci. Technol. Int. J., 18(1), 1-13. https://doi.org/10.1016/j.jestch.2014.08.002.
  60. Mohamed, M.H., Janiga, G., Pap, E. and Thevenin, D. (2011), "Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade", Energ. Convers. Manage., 52(1), 236-242. https://doi.org/10.1016/j.enconman.2010.06.070.
  61. Mohandes, M. and Rehman, S. (2016), "Convertible wind energy based on predicted wind speed at hub-height", Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 38(1), 140-148. https://doi.org/10.1080/15567036.2012.758677
  62. Mohandes, M. and Rehman, S. (2014), "Short term wind speed estimation in Saudi Arabia", J. Wind Eng. Ind. Aerod., 128, 37-53. https://doi.org/10.1016/j.jweia.2014.02.007.
  63. Mohandes, M., Rehman, S. and Rahman, S.M. (2011), "Estimation of wind speed profile using Adaptive Neuro-fuzzy Inference System (ANFIS)", Appl. Energy, 88(11), 4024-4032. https://doi.org/10.1016/j.apenergy.2011.04.015.
  64. Muller, G., Jentsch, M.F. and Stoddart, E. (2009), "Vertical axis resistance type wind turbines for use in buildings", Renew. Energ., 34(5), 1407-1412. https://doi.org/10.1016/j.renene.2008.10.008.
  65. Ponta, F.L., Seminara, J.J. and Otero, A.D. (2007), "On the aerodynamics of variable-geometry oval-trajectory Darrieus wind turbines", Renewa. Energ., 32(1), 35-56. https://doi.org/10.1016/j.renene.2005.12.007.
  66. Pope, K., Rodrigues, V., Doyle, R., Tsopelas, A., Gravelsins, R., Naterer, G.F. and Tsang, E. (2010), "Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine", Renew. Energ., 35(5), 1043-1051. https://doi.org/10.1016/j.renene.2009.10.012.
  67. Rehman, S. and Khan, S.A. (2017), "Multi-criteria wind turbine selection using weighted sum approach", Int. J. Adv. Comp. Sci. Appl., 8(6), 128-132.
  68. Rehman, S., Ali, S.S. and Khan, S.A. (2016), "Wind farm layout design using cuckoo search algorithm", Appl. Artif. Intell., 30(10), 899-922. https://doi.org/10.1080/08839514.2017.1279043.
  69. Rehman, S., Baseer, M.A., Meyer, J.P., Alam Md., M., L. Alhems, M., Lashin, A. and Al Arifi, N. (2016), "Suitability of utilizing small horizontal axis wind turbines for off grid loads in Eastern Region of Saudi Arabia", Energy Explor. Exploit., 34(3), 449-467. https://doi.org/10.1177/0144598716630170.
  70. Rehman, S. and Khan, S. (2016), "Fuzzy logic based multi-criteria wind turbine selection strategy - A case study of Qassim, Saudi Arabia", Energies, 9(11), 872. https://doi.org/10.3390/en9110872.
  71. Rehman, S., Alam M.M., Alhems, L.M., Lashin, A. and Alarefe, N. (2015), "Performance evaluation of vertical axis wind turbine for small off grid loads in North-Eastern region of Saudi Arabia", Wulfenia J., 22(9), 146-165.
  72. Rehman, S. (2014), "Tower distortion and scatter factors of co-located wind speed sensors and turbulence intensity behavior", Renew. Sust. Energ. Rev., 34, 20-29. https://doi.org/10.1016/j.rser.2014.03.007.
  73. Rehman, S., Al-Hadhrami, L.M., Alam, M.M. and Meyer, J.P. (2013), "Empirical correlation between hub height and local wind shear exponent for different sizes of wind turbines", Sust. Energ. Tech. Assess., 4, 45-51. https://doi.org/10.1016/j.seta.2013.09.003.
  74. Rehman, S. (2013), "Long-term wind speed analysis and detection of its trends using Mann-Kendall test and linear regression method", Arabian J. Sci. Eng., 38(2), 421-437 https://doi.org/10.1007/s13369-012-0445-5
  75. Rehman, S., Al-Hadhrami, L.M. and Bagiorgas, H.S. (2012a), "Offshore wind potential estimation in Ionian Sea, transaction on control and mechanical systems", 1(5), 229-234.
  76. Rehman, S., Alam, M.M., Meyer, J.P. and Al-Hadhrami, L.M. (2012b), "Wind speed characteristics and resource assessment using weibull parameters", Int. J. Green Energy, 9(8), 800-814. https://doi.org/10.1080/15435075.2011.641700.
  77. Rosen, A. and Abramovich, H. (1985), "Investigation of the structural behavior of the blades of a darrieus wind turbine", J. Sound Vib., 100(4), 493-509. https://doi.org/10.1016/S0022-460X(85)80003-1.
  78. Savonius, S.J. (1931), "The S-rotor and its applications", Mech. Eng., 53(5), 333-338.
  79. Schienbein, L.A. and Malcolm, D.J. (1983), "Design, performance, and economics of 50-kW and 500-kW vertical axis wind turbines", J. Sol. Energy Eng., 105(4), 418-424. doi:10.1115/1.3266402.
  80. Sesto, E. and Casale, C. (1998), "Exploitation of wind as an energy source to meet the world's electricity demand", J. Wind Eng. Ind. Aerod., 74-76, 375-387. https://doi.org/10.1016/S0167-6105(98)00034-8.
  81. Sharpe, T. and Proven, G. (2010), "Crossflex: Concept and early development of a true building integrated wind turbine", Energ. Buildings, 42(12), 2365-2375. https://doi.org/10.1016/j.enbuild.2010.07.032.
  82. Shires, A. (2012), "Design optimisation of an offshore vertical axis wind turbine", Energy, 166, 7-18.
  83. Shoaib, M., Siddiqui, I., Rehman, S., Rehman, S. and Khan, S. (2017), "Wind speed distribution analysis using maximum entropy principle and weibull distribution function", Environ. Prog. Sust. Energ., 36(5), 1480-1489. https://doi.org/10.1002/ep.12589
  84. Siota, T., Isaka, T., Sano, T. and Seki, K. (2010), "Matching between straight-wing nonarticulated vertical axis wind turbine and a new wind turbine generator", Elec. Eng. Japan, 174(2), 26-35. https://doi.org/10.1002/eej.21036.
  85. Staelens, Y., Saeed, F. and Paraschivoiu, I. (2003), "A straight-bladed variable-pitch VAWT concept for improved power generation", (75944), 146-154.
  86. Sutherland, H.J., Berg, D.E. and Ashwill T.D. (2012), "A Retrospective of VAWT Technology", Sandia National Laboratories.
  87. Takao, M., Kuma, H., Maeda, T., Kamada, Y., Oki, M. and Minoda, A. (2009), "A straight-bladed vertical axis wind turbine with a directed guide vane row - Effect of guide vane geometry on the performance", J. Therm. Sci., 18(1), 54-57. https://doi.org/10.1007/s11630-009-0054-0
  88. Tangler, J.L. (2000), "The evolution of rotor and blade design", Proceedings of the NREL Conference Paper NREL/ CP-500-28410, July 2000. See http://www.nrel.gov/docs/fy00osti/28410.pdf.
  89. Troutman, V. (2016), "Offshore Wind Energy is Critical for the Future of Renewable Energy in the U.S".
  90. Vandenberghe, D. and Dick, E. (1987), "A free vortex simulation method for the straight bladed vertical axis wind turbine", J. Wind Eng. Ind. Aerod., 26(3), 307-324. https://doi.org/10.1016/0167-6105(87)90002-X.
  91. Veers, P.S. (1981), "An Approach to the Fatigue Analysis of Vertical Axis Wind Turbine Blades", Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy.
  92. Wahab, A.A., Chong, W.T. and Abas, M.F. (2004), "Developing the technology for generating electricity from energy in low speed wind", Proceedings of the International Conf. of Energy, BUET, Bangladesh, February 2004.
  93. Wakui, T., Tanzawa, Y., Hashizume, T., Outa, E. and Usui, A. (2000), "Optimum method of operating the wind turbine-generator systems matching the wind condition and wind turbine type A2 - Sayigh", Proceedings of the A.A.M World Renewable Energy Congress VI (2348-2351), Oxford: Pergamon.
  94. Weblink1-Global Wind Energy Council (GWEC) - Global Statistics (2018), http://gwec.net/global-figures/graphs/.
  95. Weblink2-Global Wind Energy Council (GWEC) - Global Status of wind power 2018. http://gwec.net/global-figures/wind-energy-global-status.
  96. Wilhelm, J.P., Panther, C., Pertl, F.A. and Smith, J.E. (2009), "Momentum analytical model of a circulation controlled vertical axis wind turbine", (48906), 1009-1017.
  97. Yang, H., Lu, L. and Zhou, W. (2007), "A novel optimization sizing model for hybrid solar-wind power generation system", Sol. Energy, 81(1), 76-84. https://doi.org/10.1016/j.solener.2006.06.010.
  98. Zhang, Q., Chen, H. and Wang, B. (2010), "Modeling and Simulation of Two-Leaf Semi-rotary VAWT", Paper presented at the Life System Modeling and Intelligent Computing, Berlin, Heidelberg.
  99. Zhou, W., Lou, C., Li, Z., Lu, L. and Yang, H. (2010), "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems", Appl. Energy, 87(2), 380-389. https://doi.org/10.1016/j.apenergy.2009.08.012.
  100. Zheng, Q., Rehman, S., Alam, Md. M. and Alhems, L.M. (2017), "Wavelet and power spectrum based extraction of inherent properties of measured long-term wind speed data series", J. Earth Syst. Sci., 126(3), 36, 1-16. https://doi.org/10.1007/s12040-016-0788-5

Cited by

  1. Multi-objective structural optimization of a wind turbine blade using NSGA-II algorithm and FSI vol.93, pp.6, 2019, https://doi.org/10.1108/aeat-02-2021-0055