DOI QR코드

DOI QR Code

Apoptosis and inhibition of human epithelial cancer cells by ZnO nanoparticles synthesized using plant extract

  • Koutu, Vaibhav (Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology) ;
  • Rajawat, Shweta (Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology) ;
  • Shastri, Lokesh (Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology) ;
  • Malik, M.M. (Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology)
  • 투고 : 2018.04.23
  • 심사 : 2019.06.19
  • 발행 : 2019.07.25

초록

The present research work reports in-vitro anti-cancer activity of biologically synthesized ZnO nanoparticles (ZnO NPs) against human carcinoma cells viz SCC-40, SK-MEL-2 and SCC-29B using Sulforhodamine-B (SRB) Assay. ZnO NPs were synthesized by a unique and novel biological route using Temperature-gradient phenomenon where the extract of combination of Catharanthus roseus (L.) G. Don (C. roseus), Azadirachta indica (A. indica), Ficus religiosa (F. religiosa) and NaOH solution were used as synthesis medium. The morphology of the ZnO NPs was characterized by Transmission Electron Microscopy (TEM). TEM images reveal that particle size of the samples reduces from 76 nm to 53 nm with the increase in reaction temperature and 68 nm to 38 nm with the increase in molar concentration of NaOH respectively. XRD study confirms the presence of elements and reduction in crystallite size with increase in reaction temperature and NaOH concentration. The diffraction peaks show broadening and a slight shift towards lower Bragg angle ($2{\theta}$) which represents the reduction in crystallite size as well as presence of uniform strain. The FTIR spectra of the extract show transmittance peak fingerprint of Zn-O bond and presence of bioactive molecules These NPs exhibit inhibition greater than 50% for SCC-40, SK-MEL-2 and SCC-29B cell lines and more than 50% cell kill for SCC-29B cells at concentrations < $80{\mu}g/ml$. Nanoparticles with smallest size have shown better anti-cancer activity and peculiar cell-selectivity. The combination of extracts of these plants with ZnO NPs can be used in targeted drug delivery as an effective anti-cancer agent, a potential application in cancer treatment.

키워드

참고문헌

  1. Ahmad, Z., Laughlin, T.F. and Kady, I.O. (2015), "Thymoquinone inhibits Escherichia coli ATP synthase and cell growth", PloS one, 10(5), e0127802. https://doi.org/10.1371/journal.pone.0127802
  2. Arakelova, E.R., Grigoryan, S.G., Arsenyan, F.G., Babayan, N.S., Grigoryan, R.M. and Sarkisyan, N.K. (2014), "In vitro and in vivo anticancer activity of nanosize zinc oxide composites of doxorubicin", Int. J. Med. Heal. Pharm. Biomed. Eng., 8, 33-38.
  3. Ashrafi, A.A. (2011), In: Encyclopedia of Semiconductor Nanotechnology, (ed. Umar, A.), American Scientific Publishers, Chapter 10, p. 1.
  4. Bisht, G. and Rayamajhi, S. (2016), "ZnO Nanoparticles: A promising anticancer agent", Nanobiomedicine, pp. 3-9. https://doi.org/10.5772/63437
  5. DerMarderosian, A. and Beutler, J.A. (2012), The review of natural products: the most complete source of natural product information, Facts and Comparisons, St. Louis, MO, USA.
  6. Dhamodarana, M. and Kavithab, S. (2015), "Anticancer Activity of Zinc Nanoparticles Made using Terpenoids from Aqueous Leaf Extract of Andrographis Paniculat", Int. J. Pharmaceut. Sci. Nanotech., 8(4), 3018-3023.
  7. El-Sayed, I.H., Huang, X. and El-Sayed, M.A. (2005), "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer", Nano Letters, 5(5), 829-834. https://doi.org/10.1021/nl050074e
  8. Fang, J., Fan, H., Ma, Y., Wang, Z. and Chang, Q. (2015), "Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis", Appl. Surf. Sci., 332, 47-54. https://doi.org/10.1016/j.apsusc.2015.01.139
  9. Fiorillo, M., Verre, A.F., Iliut, M., Peiris-Pages, M., Ozsvari, B., Gandara, R., Cappello, A.R., Sotgia, F., Vijayaraghavan, A. and Lisanti, M.P. (2015), "Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for nontoxic cancer treatment, via "differentiation-based nanotherapy"", Oncotarget, 6(6), 3553-3562. https://doi.org/10.18632/oncotarget.3348
  10. Garcia-Contreras, R., Scougall-Vilchis, R.J., Contreras-Bulnes, R., Ando, Y., Kanda, Y., Hibino, Y., Nakajima, H. and Sakagami, H. (2014), "Effects of TiO2 nanoparticles on cytotoxic action of chemotherapeutic drugs against a human oral squamous cell carcinoma cell line", in vivo, 28(2), 209-215.
  11. Gurunathan, S., Han, J.W., Park, J.H., Kim, E., Choi, Y.J., Kwon, D.N. and Kim, J.H. (2015), "Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy", Int. J. Nanomed., 10, 6257-6276. https://doi.org/10.2147/IJN.S92449
  12. Iwashita, K., Kobori, M., Yamaki, K. and Tsushida, T. (2000), "Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells", Biosci. Biotechnol. Biochem., 64(9), 1813-1820. https://doi.org/10.1271/bbb.64.1813
  13. Kolodziejczak-Radzimska, A. and Jesionowski, T. (2014), "Zinc oxide-from synthesis to application: a review", Materials, 7(4), 2833-2881. https://doi.org/10.3390/ma7042833
  14. Koutu, V. and Malik, M.M. (2017), "Method of biological synthesis of zinc oxide (ZnO) nanoparticles", Patent Application Publication India 201721923873A; (Filed on July 6, 2017, Published on September 22, 2017).
  15. Koutu, V., Shastri, L. and Malik, M.M. (2016), "Effect of NaOH concentration on optical properties of zinc oxide nanoparticles", Mater. Sci.-Poland, 34(4), 819-827. https://doi.org/10.1515/msp-2016-0119
  16. Koutu, V., Shastri, L. and Malik, M.M. (2017), "Effect of temperature gradient on zinc oxide nano particles synthesized at low reaction temperatures", Mater. Res. Express, 4(3), 035011. https://doi.org/10.1088/2053-1591/aa5855
  17. Krishna, P.G., Ananthaswamy, P.P., Gadewar, M., Bora, U. and Mutta, N.B. (2016), "In vitro antibacterial and anticancer studies of ZnO nanoparticles prepared by sugar fueled combustion synthesis", Adv. Mater. Lett., 8(1), 24-29. https://doi.org/10.5185/amlett.2017.6424
  18. Liu, M., Amini, A. and Ahmad, Z. (2017), "Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth", Int. J. Biol. Macromolecule, 95, 145-152. https://doi.org/10.1016/j.ijbiomac.2016.11.038
  19. Lucas, D.M., Still, P.C., Bueno-Perez, L., Grever, M.R. and Douglas Kinghorn, A. (2010), "Potential of plant-derived natural products in the treatment of leukemia and lymphoma", Current Drug Targets, 11(7), 812-822. https://doi.org/10.2174/138945010791320809
  20. Magnotta, M., Murata, J., Chen, J. and De Luca, V. (2006), "Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling", Phytochemistry, 67(16), 1758-1764. https://doi.org/10.1016/j.phytochem.2006.05.018
  21. Mittal, A.K., Chisti, Y. and Banerjee, U.C. (2013), "Synthesis of metallic nanoparticles using plant extracts", Biotechnol. Adv., 31(2), 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  22. Mote, V.D., Purushotham, Y. and Dole, B.N. (2016), "Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synthesized by sol-gel method", Mater. Des., 96, 99-105. https://doi.org/10.1016/j.matdes.2016.02.016
  23. Nagajyothi, P.C., Muthuraman, P., Sreekanth, T.V.M., Kim, D.H. and Shim, J. (2017), "Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells", Arab. J. Chem., 10(2), 215-225. https://doi.org/10.1016/j.arabjc.2016.01.011
  24. Nam, K.C., Choi, K.H., Lee, K.D., Kim, J.H., Jung, J.S. and Park, B.J. (2016), "Particle size dependent photodynamic anticancer activity of hematoporphyrin-conjugated Fe3O4 particles", J. Nanomater., 1. https://doi.org/10.1155/2016/1278393
  25. Namvar, F., Azizi, S., Rahman, H.S., Mohamad, R., Rasedee, A., Soltani, M. and Rahim, R.A. (2016), "Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite", OncoTargets Therapy, 9, 4549-4559. https://doi.org/10.2147/OTT.S95962
  26. Pourrahimi, A.M., Liu, D., Strom, V., Hedenqvist, M.S., Olsson, R.T. and Gedde, U.W. (2015), "Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications", J. Mater. Chem. A, 3(33), 17190-17200. https://doi.org/10.1039/C5TA03120F
  27. Rasmussen, J.W., Martinez, E., Louka, P. and Wingett, D.G. (2010), "Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications", Expert Opinion Drug Delivery, 7(9), 1063-1077. https://doi.org/10.1517/17425247.2010.502560
  28. Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K.S. and Ravikumar, V. (2014), "Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles", Materials Science and Engineering: C, 44, 234-239. https://doi.org/10.1016/j.msec.2014.08.030
  29. Tian, H., Fan, H., Li, M. and Ma, L. (2015), "Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor", ACS SENSORS, 1(3), 243-250. https://doi.org/10.1021/acssensors.5b00236
  30. Tian, H., Fan, H., Ma, J., Ma, L. and Dong, G. (2017), "Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing", Electrochimica Acta, 247, 787-794. https://doi.org/10.1016/j.electacta.2017.07.083
  31. Xiao, F.X., Hung, S.F., Tao, H.B., Miao, J., Yang, H.B. and Liu, B. (2014), "Spatially branched hierarchical ZnO nanorod-$TiO_2$ nanotube array heterostructures for versatile photocatalytic and photo electrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures", Nanoscale, 6(24), 14950-14961. https://doi.org/10.1039/C4NR04886E
  32. Tang, L., Yang, X., Yin, Q., Cai, K., Wang, H., Chaudhury, I., Yao, C., Zhou, Q., Kwon, M., Hartman, J.A. and Dobrucki, I.T. (2014), "Investigating the optimal size of anticancer nanomedicine", Proceedings of the National Academy of Sciences, 111(43), 15344-15349. https://doi.org/10.1073/pnas.1411499111
  33. Tian, H., Fan, H., Ma, J., Liu, Z., Ma, L., Lei, S., Fang, J. and Long, C. (2018), "Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing", J. Hazard. Mater., 341, 102-111. https://doi.org/10.1016/j.jhazmat.2017.07.056
  34. Tiong, S., Looi, C., Hazni, H., Arya, A., Paydar, M., Wong, W., Cheah, S.C., Mustafa, M. and Awang, K. (2013), "Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don", Molecules 18, no. 8 (2013): 9770-9784. https://doi.org/10.3390/molecules18089770
  35. Wang, C., Fan, H., Ren, X. and Fang, J. (2018), "Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures", Appl. Phys. A - Mater. Sci. Process., 124(2), 99. https://doi.org/10.1007/s00339-017-1543-8
  36. Zak, A.K., Majid, W.A., Abrishami, M.E. and Yousefi, R. (2011), "X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods", Solid State Sci., 13(1), 251-256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024

피인용 문헌

  1. In-vitro studies of colloidal silver against SK-mel-28 cancer cell line vol.11, pp.3, 2020, https://doi.org/10.1088/2043-6254/ab9d22