DOI QR코드

DOI QR Code

CONSECUTIVE CANCELLATIONS IN FILTERED FREE RESOLUTIONS

  • Received : 2018.09.23
  • Accepted : 2019.05.10
  • Published : 2019.07.31

Abstract

Let M be a finitely generated module over a regular local ring (R, n). We will fix an n-stable filtration for M and show that the minimal free resolution of M can be obtained from any filtered free resolution of M by zero and negative consecutive cancellations. This result is analogous to [10, Theorem 3.1] in the more general context of filtered free resolutions. Taking advantage of this generality, we will study resolutions obtained by the mapping cone technique and find a sufficient condition for the minimality of such resolutions. Next, we give another application in the graded setting. We show that for a monomial order ${\sigma}$, Betti numbers of I are obtained from those of $LT_{\sigma}(I)$ by so-called zero ${\sigma}$-consecutive cancellations. This provides a stronger version of the well-known cancellation "cancellation principle" between the resolution of a graded ideal and that of its leading term ideal, in terms of filtrations defined by monomial orders.

Keywords

References

  1. A. Capani, G. De Dominicis, G. Niesi, and L. Robbiano, CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it.
  2. J. Elias and G. Valla, Structure theorems for certain Gorenstein ideals, Michigan Math. J. 57 (2008), 269-292. https://doi.org/10.1307/mmj/1220879409
  3. M. L. Green, Generic initial ideals, in Six lectures on commutative algebra, 119-186, Mod. Birkhauser Class, Birkhauser Verlag, Basel, 2010. https://doi.org/10.1007/978-3-0346-0329-4_2
  4. G.-M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, second, extended edition, Springer, Berlin, 2008.
  5. M. Kreuzer and L. Robbiano, Computational Commutative Algebra. 2, Springer-Verlag, Berlin, 2005.
  6. I. Peeva, Graded Syzygies, Algebra and Applications, 14, Springer-Verlag London, Ltd., London, 2011. https://doi.org/10.1007/978-0-85729-177-6
  7. L. Robbiano, Coni tangenti a singolarita' razionali, Curve algebriche, Istituto di Analisi Globale, Firenze, 1981.
  8. L. Robbiano and G. Valla, Free resolutions for special tangent cones, in Commutative algebra (Trento, 1981), 253-274, Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983.
  9. M. E. Rossi and L. Sharifan, Minimal free resolution of a finitely generated module over a regular local ring, J. Algebra 322 (2009), no. 10, 3693-3712. https://doi.org/10.1016/j.jalgebra.2009.07.020
  10. M. E. Rossi and L. Sharifan, Consecutive cancellations in Betti numbers of local rings, Proc. Amer. Math. Soc. 138 (2010), no. 1, 61-73. https://doi.org/10.1090/S0002-9939-09-10010-2
  11. M. E. Rossi and G. Valla, Hilbert Functions of Filtered Modules, Lecture Notes of the Unione Matematica Italiana, 9, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-14240-6
  12. J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Inc., New York, 1979.
  13. A. Sammartano, Consecutive cancellations in Tor modules over local rings, J. Pure Appl. Algebra 220 (2016), no. 12, 3861-3865. https://doi.org/10.1016/j.jpaa.2016.05.017
  14. L. Sharifan, Minimal free resolution of monomial ideals by iterated mapping cone, Bull. Iranian Math. Soc. 44 (2018), no. 4, 1007-1024. https://doi.org/10.1007/s41980-018-0066-1
  15. T. Shibuta, Cohen-Macaulayness of almost complete intersection tangent cones, J. Algebra 319 (2008), no. 8, 3222-3243. https://doi.org/10.1016/j.jalgebra.2007.11.023