FIGURE 1. All rooted 3-tuplet trees with 3 tuplets in
FIGURE 2. Two bijections
FIGURE 3. The bijection ψ
FIGURE 4. Tree decomposition
FIGURE 5. Outline of a lattice path P induced from tree decomposition
FIGURE 6. Cut-and-paste bijection γi,j
TABLE 1. The number of vertices of outdegree k at level l among all rooted 3-tuplet trees in
References
- L. W. Beineke and R. E. Pippert, The number of labeled k-dimensional trees, J. Combinatorial Theory 6 (1969), 200-205. https://doi.org/10.1016/S0021-9800(69)80120-1
- M. Bona, M. Bousquet, G. Labelle, and P. Leroux, Enumeration of m-ary cacti, Adv. in Appl. Math. 24 (2000), no. 1, 22-56. https://doi.org/10.1006/aama.1999.0665
- S.-P. Eu, S. Seo, and H. Shin, Enumerations of vertices among all rooted ordered trees with levels and degrees, Discrete Math. 340 (2017), no. 9, 2123-2129. https://doi.org/10.1016/j.disc.2017.04.007
- F. Harary and G. E. Uhlenbeck, On the number of Husimi trees. I, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 315-322. https://doi.org/10.1073/pnas.39.4.315
- M. Jani, R. G. Rieper, and M. Zeleke, Enumeration of K-trees and applications, Ann. Comb. 6 (2002), no. 3-4, 375-382. https://doi.org/10.1007/s000260200010
- S. Seo and H. Shin, Two involutions on vertices of ordered trees. I, 14st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2002), 2002.