참고문헌
- Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda, B. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
- Abe, A., Kobayashi, Y. and Yamada, G. (2007), "Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance", J. Sound Vib., 304, 957-968. https://doi.org/10.1016/j.jsv.2007.03.009
- Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., Int. J., 5(4), 223-244. https://doi.org/10.12989/amr.2016.5.4.223
- Adim, B., Daouadji, T.H. and Abbes, B. (2016a), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x
- Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016b), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Indus., 17(5), 512. https://doi.org/10.1051/meca/2015112
- Adim, B., Daouadji, T.H. and Rabahi, A. (2016c), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", Int. J. Adv. Struct. Eng. (IJASE), 8(2), 103-117. https://doi.org/10.1007/s40091-016-0109-x
- Adim, B., Daouadji, T.H., Rabia, B. and Hadji, L. (2016d), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., Int. J., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063
- Adim, B., Daouadji, T.H., Rabahi, A. and Abdelouahed, T. (2016e), "An Efficient and Simple Higher Order of Shear Deformation Theory for Static and Free Vibration of Laminated Composite Plates", Int. J. Compos. Mater. Matrices, 2(1).
- Ahmadi, H. (2018), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-018-0679-2
- Ahmadi, H. and Foroutan, K. (2019), "Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales", Thin Wall. Struct., 135, 33-44. https://doi.org/10.1016/j.tws.2018.10.028
- Alijani, F., Amabili, M. and Bakhtiari-Nejad, F. (2011), "On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells", Int. J. Nonlin. Mech., 46(1), 170-179. https://doi.org/10.1016/j.ijnonlinmec.2010.08.006
- Belica, T. and Magnucki, K. (2006), "Dynamic stability of a porous cylindrical shell", Appl. Math. Mech., 207-208.
- Belica, T., Malinowski, M. and Magnucki, K. (2011), "Dynamic stability of an isotropic metal foam cylindrical shell subjected to external pressure and axial compression", J. Appl. Mech., 78(4), 041003. https://doi.org/10.1115/1.4003768
- Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016a), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002
- Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016b), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., Int. J., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429
- Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016c), "Static analysis of the fgm plate with porosities", Steel Compos. Struct., Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123
- Bich, D.H., Van Dung, D. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012
- Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
- Breslavsky, I.D. and Amabili, M. (2018), "Nonlinear vibrations of a circular cylindrical shell with multiple internal resonances under multi-harmonic excitation", Nonlin. Dyn., 1-10.
- Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill, New York, USA.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052
- Daneshjou, K., Ramezani, H. and Talebitooti, R. (2011), "Wave transmission through laminated composite double-walled cylindrical shell lined with porous materials", Appl. Math. Mech., 32, 701-718. https://doi.org/10.1007/s10483-011-1450-9
- Daouadji, T.H. and Adim, B. (2016a), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., Int. J., 5(3), 141-169. https://doi.org/10.12989/amr.2016.5.3.141
- Daouadji, T.H. and Adim, B. (2016b), "Theoretical analysis of composite beams under uniformly distributed load", Adv. Mater. Res., Int. J., 5(1), 1-9. https://doi.org/10.12989/amr.2016.5.1.001
- Daouadji, T.H., Adim, B. and Benferhat, R. (2016a), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., Int. J., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035
- Daouadji, T.H., Benferhat, R. and Adim, B. (2016b), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., Int. J., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107
- Djoudi, M.S. and Bahai, H. (2003), "A shallow shell finite element for the linear and non-linear analysis of cylindrical shells", Eng. Struct., 25, 769-778. https://doi.org/10.1016/S0141-0296(03)00002-6
- Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B-Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009
- Du, C. and Li, Y. (2014), "Nonlinear internal resonance of functionally graded cylindrical shells using the hamiltonian dynamics", Acta Mech. Solida Sin., 27(6), 635-647. https://doi.org/10.1016/S0894-9166(15)60008-8
- Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., Int. J., 20(1), 205-225. http://dx.doi.org/10.12989/scs.2016.20.1.205
- Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., Int. J., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999
- Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall. Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039
- Ghadiri, M. and SafarPour, H. (2017), "Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment", J. Therm. Stresses, 40(1), 55-71. https://doi.org/10.1080/01495739.2016.1229145
- Ghiasian, S.E., Kiani, Y. and Eslami, M.R. (2013), "Dynamic buckling of suddenly heated or compressed fgm beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001
- Guan, X., Sok, K., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "A general vibration analysis of functionally graded porous structure elements of revolution with general elastic restraints", Compos. Struct., 209, 277-299. https://doi.org/10.1016/j.compstruct.2018.10.103
- Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
- Li, X., Du, C.C. and Li, Y.H. (2018), "Parametric resonance of a fg cylindrical thin shell with periodic rotating angular speeds in thermal environment", Appl. Math. Model., 59, 393-409. https://doi.org/10.1016/j.apm.2018.01.048
- Li, H., Pang, F., Chen, H. and Du, Y. (2019), "Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method", Compos. Part B-Eng., 164, 249-264. https://doi.org/10.1016/j.compositesb.2018.11.046
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
- Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., Int. J., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
- Mojahedin, A., Joubaneh, E.F. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mech., 225(12), 3437-3452. https://doi.org/10.1007/s00707-014-1153-x
- Pellicano, F. (2007), "Vibrations of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022
- Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61, 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8
- Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012
- Rodrigues, L., Goncalves, P.B. and Silva, F.M.A. (2017), "Internal resonances in a transversally excited imperfect circular cylindrical shell", Pro. Eng., 199, 838-843. https://doi.org/10.1016/j.proeng.2017.09.010
- Rossikhin, Y.A. and Shitikova, M.V. (2015), "Nonlinear dynamic response of a fractionally damped cylindrical shell with a three-to-one internal resonance", Appl. Math. Comput., 257, 498-525. https://doi.org/10.1016/j.amc.2015.01.018
- Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", NASA Technical Note D-4705.
- Shen, H.-S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025
- Sheng, G.G. and Wang, X. (2018a), "The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells", Appl. Math. Model., 56, 389-403. https://doi.org/10.1016/j.apm.2017.12.021
- Sheng, G.G. and Wang, X. (2018b), "Nonlinear vibrations of fg cylindrical shells subjected to parametric and external excitations", Compos. Struct., 191, 78-88. https://doi.org/10.1016/j.compstruct.2018.02.018
- Tesar, A. (1985), "Nonlinear three-dimensional resonance analysis of shells", Comput. Struct., 21, 797-805. https://doi.org/10.1016/0045-7949(85)90156-7
- Volmir, A.S. (1972), Non-linear dynamics of plates and shells, Science Edition M, USSR.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Tech., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090
- Zare Jouneghani, F., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1252. https://doi.org/10.3390/app7121252
- Zhang, L., Song, Z. and Liew, K. (2017), "Modeling aerothermoelastic properties and active flutter control of nanocomposite cylindrical shells in supersonic airflow under thermal environments", Comput. Methods Appl. Mech. Eng., 325, 416-433. https://doi.org/10.1016/j.cma.2017.07.014
- Zhang, W., Liu, T., Xi, A. and Wang, Y.N. (2018), "Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes", J. Sound Vib., 423, 65-99. https://doi.org/10.1016/j.jsv.2018.02.049
- Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F. and Shuai, C. (2019a), "A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams", Compos. Part B-Eng., 165, 155-166. https://doi.org/10.1016/j.compositesb.2018.11.080
- Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R. and Shuai, C. (2019b), "Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions", Compos. Part B-Eng., 168, 106-120. https://doi.org/10.1016/j.compositesb.2018.12.044
- Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019c), "A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions", Compos. Part B-Eng., 156, 406-424. https://doi.org/10.1016/j.compositesb.2018.08.115
- Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019d), "Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints", Compos. Part B-Eng., 159, 20-43. https://doi.org/10.1016/j.compositesb.2018.08.114
- Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019e), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B-Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087
피인용 문헌
- Asymmetric Large Deformation Superharmonic and Subharmonic Resonances of Spiral Stiffened Imperfect FG Cylindrical Shells Resting on Generalized Nonlinear Viscoelastic Foundations vol.12, pp.5, 2019, https://doi.org/10.1142/s1758825120500520
- Nonlinear buckling analysis of FGP shallow spherical shells under thermomechanical condition vol.40, pp.4, 2019, https://doi.org/10.12989/scs.2021.40.4.555