Acknowledgement
Supported by : University of Kashan
References
- Akhavan Alavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech., A/Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008
- Arefi, M. and Rahimi, G.H. (2012), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13.
- Assaee, H. and Hasani, H. (2015), "Forced vibration analysis of composite cylindrical shells using spline finite strip method Forced vibration analysis of composite cylindrical shells using spline finite strip method", Thin-Wall. Struct., 97, 207-214. https://doi.org/10.1016/j.tws.2015.09.014
- Cao, X., Shi, L., Zhang, X. and Jiang, G. (2013), "Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer", Smart Mater. Struct., 22(6), 34-56. https://doi.org/10.1088/0964-1726/22/6/065003
- Chen, W.Q., Bian, Z.G., Lv, C.F. and Ding, H.J. (2004), "3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid", Int. J. Solids Struct., 41, 947-964. https://doi.org/10.1016/j.ijsolstr.2003.09.036
- Das, A. and Karmakar, A. (2016), "Vibration Characteristics of Functionally Graded Pre-Twisted Turbo Machinery Blade with Rotational Effect", Adv. Sci. Lett., 22(1), 111-117. https://doi.org/10.1166/asl.2016.6769
- Das, A. and Karmakar, A. (2018), "Free vibration characteristics of functionally graded pre-twisted conical shells under rotation", J. Inst. Eng. India Ser. C, 99(6), 681-692. https://doi.org/10.1007/s40032-017-0378-6
- Dehghan, M., Zamani Nejad, M. and Moosaie, A. (2016), "Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007
- Dey, S., Sarkar, S., Das, A., Karmakar, A. and Adhikari, S. (2014), "Effect of twist and rotation on vibration of functionally graded conical shells", Int. J. Mech. Mater. Des., 11, 425-437. https://doi.org/10.1007/s10999-014-9266-x
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. http://dx.doi.org/10.12989/anr.2019.7.2.109
- Frikha, A., Zghala, S. and Dammaka, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048
- Ghorbanpour Arani, A., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178
- Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023
- Hua, L. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical in shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X
- Irie, T., Yamada, G. and Kaneko, Y. (1982), "Free vibration of a conical shell with variable thickness", J. Sound Vibr., 82(1), 83-94. https://doi.org/10.1016/j.tws.2014.01.030
- Jafari, A.A., Khalili, S.M.R. and Tavakolian, M. (2014), "Nonlinear vibration of functionally graded cylindrical shells embedded with a piezoelectric layer", Thin-Wall. Struct., 79, 8-15. https://doi.org/10.1016/j.tws.2014.01.030
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2013), "Vibration of laminated composites and sandwich shells based on higher order zigzag theory", Eng. Struct., 56, 880-888. https://doi.org/10.1016/j.engstruct.2013.06.014
- Lam, K.Y. and Qian, W. (2000), "Free vibration of symmetric angle-ply thick laminated composite cylindrical shells", Compos.: Part B, Eng., 31, 345-354. https://doi.org/10.1016/S1359-8368(99)00075-X
- Li, Y.S. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezoelectric micro plate based on the modified couple-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009
- Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311, 498-515. https://doi.org/10.1016/j.jsv.2007.09.018
- Liew, K.M., He, X.Q. and Kitipornchai, S. (2004), "Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators", Comput. Methods Appl. Mech. Eng., 193, 257-273. https://doi.org/10.1016/j.cma.2003.09.009
- Liu, Y. and Chu, F. (2012), "Nonlinear vibrations of rotating thin circular cylindrical shell", Nonlinear Dyn., 67, 1467-1479. https://doi.org/10.1007/s11071-011-0082-7
- Loghmani, A., Danesh, M., Keshmiri, M. and Savadi, M.M. (2015), "Theoretical and experimental study of active vibration control of a cylindrical shell using piezoelectric disks", J. Low Frequency Noise Vib. Active Control, 34(3), 269-288. https://doi.org/10.1260/0263-0923.34.3.269
- Malekzadeh, P. and Heydarpour, Y. (2012), "Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment", Compos. Struct., 94, 2971-2981. https://doi.org/10.1016/j.compstruct.2012.04.011
- Mohammadimehr, M. and Shahedi, S. (2017), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B: Eng., 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040
- Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054
- Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. http://dx.doi.org/10.12989/sem.2016.59.3.431
- Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37(1), 1-15.
- Mohammadimehr, M., Moradi, M. and Loghman, A. (2014), "Influence of the Elastic Foundation on the Free Vibration and Buckling of Thin-Walled Piezoelectric-Based FGM Cylindrical Shells Under Combined Loadings", J. Solid Mech., 6(4), 347-365.
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using eshelby-mori-tanaka approach", J. Solid Mech., 7(2), 173-190.
- Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-544. http://dx.doi.org/10.12989/scs.2016.20.3.513
- Mohammadimehr, M., Shahedi, S., Rousta Navi, B. (2017), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622
- Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S.M. (2018a), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vibr. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022
- Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018b), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., Int. J., 26(4), 513-531. http://dx.doi.org/10.12989/scs.2018.26.4.513
- Oh, I. and Lee, D. (2007), "Resonant frequency and instability of multi-layered microresonators with initial imperfection subject to piezoelectric loads", Microelectron Eng., 84, 1388-1392. https://doi.org/10.1016/j.mee.2007.01.103
- Patel, B.P., Gupta, S.S., Loknath, M.S. and Kadu, C.P. (2005), "Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory", Compos. Struct., 69, 259-270. https://doi.org/10.1016/j.compstruct.2004.07.002
- Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, Int. J., 23(5), 361-376. http://dx.doi.org/10.12989/cac.2019.23.5.361
- Razavi, H., Faramarzi Babadi, A. and Tadi Beni, Y. (2016), "Free vibration analysis of functionally graded piezoelectr ic cylindr ical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309. https://doi.org/10.1016/j.compstruct.2016.10.056
- Rostami, R., Irani Rahaghi, M. and Mohammadimehr, M. (2019), "Vibration control of the rotating sandwich cylindrical shell considering functionally graded core and functionally graded magneto-electro-elastic layers by using differential quadrature method", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636218824139
- Rouzegar, J. and Abad, F. (2015), "Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory", Thin-Wall. Struct., 89, 76-83. https://doi.org/10.1016/j.tws.2014.12.010
- Setoodeha, A.R., Shojaeea, M. and Malekzadeh, P. (2018), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core", Compos. Part B: Eng., 165, 798-822. https://doi.org/10.1016/j.compositesb.2019.01.022
- Sheng, G.G. and Wang, X. (2009a), "Active control of functionally graded laminated cylindrical shells", Compos. Struct., 90, 448-457. https://doi.org/10.1016/j.compstruct.2009.04.017
- Sheng, G.G. and Wang, X. (2009b), "Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads", J. Sound Vib., 323, 772-789. https://doi.org/10.1016/j.jsv.2009.01.017
- Sheng, G.G. and Wang, X. (2017), "The non-linear vibrations of rotating functionally graded cylindrical shells", Nonlinear Dyn., 87(2), 1095-1109. https://doi.org/10.1007/s11071-016-3100-y
- Shu, C. (1995), "An efficient approach for free vibration analysis of conical shells", Int. J. Mech. Sci., 38(9), 935-949. https://doi.org/10.1016/0020-7403(95)00096-8
- Sun, S., Chu, S. and Cao, D. (2012), "Vibration characteristics of thin rotating cylindrical shells with various boundary conditions", J. Sound Vib., 331, 4170-4186. https://doi.org/10.1016/j.jsv.2012.04.018
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Engrg., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
- Tornabene, F. and Reddy, J.N. (2013), "FGM and laminated doubly-curved and degenerate shells resting on nonlinear elastic foundations: a GDQ solution for static analysis with a posteriori stress and strain recovery", J. Indian Inst. Sci., 93(4), 635-688.
- Tornabene, F., Liverani, A. and Caligiana, G. (2011), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53, 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007
- Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015a), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015b), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B Eng., 89(1), 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623
- Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047
- Yazdani, R., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings", Struct. Eng. Mech., Int. J., 70(3), 351-365. http://dx.doi.org/10.12989/sem.2019.70.3.351
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B, 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037
- Zhang, J., Li, G. and Li, S. (2015), "Analysis of transient displacements for a ceramic-metal functionally graded cylindrical shell under dynamic thermal loading", Ceram. Int., 41, 12378-2385. https://doi.org/10.1016/j.ceramint.2015.06.070
Cited by
- Free Vibration Analysis of Cylindrical Micro/Nano-Shell Reinforced with CNTRC Patches vol.13, pp.4, 2019, https://doi.org/10.1142/s175882512150040x