DOI QR코드

DOI QR Code

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Janghorban, Maziar (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
  • 투고 : 2018.12.11
  • 심사 : 2019.06.12
  • 발행 : 2019.07.25

초록

This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

키워드

참고문헌

  1. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
  2. Asemi, K. and Shariyat, M. (2016), "Three-dimensional biaxial post-buckling analysis of heterogeneous auxetic rectangular plates on elastic foundations by new criteria", Comput. Methods Appl. Mech. Eng., 302, 1-26. https://doi.org/10.1016/j.cma.2015.12.026
  3. Askes, H. and Aifantis, E.C. (2011), "Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results", Int. J. Solids Struct., 48(13), 1962-1990. https://doi.org/10.1016/j.cma.2015.12.026
  4. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  5. Babuska, I. and Li, L. (1992), "The problem of plate modeling: Theoretical and computational results", Comput. Methods Appl. Mech. Eng., 100(2), 249-273. https://doi.org/10.1016/0045-7825(92)90185-M
  6. Beldjelili, Y., Tounsi, A. and Mahmoud, S. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. http://dx.doi.org/10.12989/sss.2016.18.4.755
  7. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  8. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. http://dx.doi.org/10.12989/sem.2016.57.5.837
  9. Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  10. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. http://dx.doi.org/10.12989/sem.2016.60.2.313
  11. Chakrabarti, A. and Sheikh, A. (2003), "Buckling of laminated composite plates by a new element based on higher order shear deformation theory", Mech. Adv. Mater. Struct., 10(4), 303-317. https://doi.org/10.1080/10759410306754
  12. Cosserat, E. (1909), F Cosserat Theorie des Corps Deformables Herman and Co., Paris, France.
  13. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  14. Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes", Int. J. Mech. Sci., 150, 510-525. https://doi.org/10.1016/j.ijmecsci.2018.09.043
  15. Farajpour, A., Farokhi, H. and Ghayesh, M.H. (2019), "Chaotic motion analysis of fluid-conveying viscoelastic nanotubes", Eur. J. Mech.-A/Solids, 74, 281-296. https://doi.org/10.1016/j.euromechsol.2018.11.012
  16. Farokhi, H. and Ghayesh, M.H. (2015a), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
  17. Farokhi, H. and Ghayesh, M.H. (2015b), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
  18. Farokhi, H. and Ghayesh, M.H. (2016), "Size-dependent parametric dynamics of imperfect microbeams", Int. J. Eng. Sci., 99, 39-55. https://doi.org/10.1016/j.ijengsci.2015.10.014
  19. Farokhi, H. and Ghayesh, M.H. (2018a), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017
  20. Farokhi, H. and Ghayesh, M.H. (2018b), "On the dynamics of imperfect shear deformable microplates", Int. J. Eng. Sci., 133, 264-283. https://doi.org/10.1016/j.ijengsci.2018.04.011
  21. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., Int. J., 27(1), 109-122. http://dx.doi.org/10.12989/scs.2018.27.1.109
  22. Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Nonlocal elasticity theory for radial vibration of nanoscale spherical shells", Eur. J. Mech.-A/Solids, 41, 37-42. https://doi.org/10.1016/j.euromechsol.2013.02.003
  23. Ghayesh, M.H. (2018), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech.-A/Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001
  24. Ghayesh, M.H., Farokhi, H. and Hussain, S. (2016), "Viscoelastically coupled size-dependent dynamics of microbeams", Int. J. Eng. Sci., 109, 243-255. https://doi.org/10.1016/j.ijengsci.2016.09.004
  25. Ghayesh, M.H., Farokhi, H., Gholipour, A., Hussain, S. and Arjomandi, M. (2017a), "Resonance responses of geometrically imperfect functionally graded extensible microbeams", J. Computat. Nonlinear Dyn., 12(5), 051002. https://doi.org/10.1115/1.4035214
  26. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017b), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010
  27. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. ttps://doi.org/10.1016/j.ijengsci.2017.03.014
  28. Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
  29. Gibson, R.F. (2016), Principles of Composite Material Mechanics, CRC press.
  30. Gopalakrishnan, S. and Narendar, S. (2013), Wave propagation in nanostructures, Springer, Switzerland.
  31. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726. http://dx.doi.org/10.12989/scs.2017.25.6.717
  32. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071
  33. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  34. Jalaei, M. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B: Eng., 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053
  35. Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014
  36. Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Thermal Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118
  37. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
  38. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
  39. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421. https://doi.org/10.1142/S0217984916504212
  40. Karami, B. and Janghorban, M. (2019), "Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution", Eur. J. Mech.-A/Solids, 76, 36-45. https://doi.org/10.1016/j.euromechsol.2019.03.008
  41. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. http://dx.doi.org/10.12989/anr.2019.7.1.051
  42. Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 23(3), 215-225. http://dx.doi.org/10.12989/sss.2019.23.3.215
  43. Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011
  44. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  45. Karami, B., Shahsavari, D. and Janghorban, M. (2018c), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
  46. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018d), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. http://dx.doi.org/10.12989/scs.2018.29.3.349
  47. Karami, B., janghorban, M. and Tounsi, A. (2019a), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. http://dx.doi.org/10.12989/sem.2019.69.5.487
  48. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. http://dx.doi.org/10.12989/sem.2019.70.1.055
  49. Karami, B., shahsavari, D., Janghorban, M. and Li, L. (2019c), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089
  50. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019d), "Wave dispersion of nanobeams incorporating stretching effect", Waves Random Complex Media. https://doi.org/10.1080/17455030.2019.1607623
  51. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019e), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  52. Karami, B., Shahsavari, D., Karami, M. and Li, L. (2019f), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(6), 2149-2169. https://doi.org/10.1177/0954406218781680
  53. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., Int. J., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
  54. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. http://dx.doi.org/10.12989/sss.2017.20.5.595
  55. Katariya, P., Das, A. and Panda, S.K. (2018), "Buckling analysis of SMA bonded sandwich structure-using FEM", Proceedings of IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012035.
  56. Kiani, K. (2014), "Revisiting the free transverse vibration of embedded single-layer graphene sheets acted upon by an in-plane magnetic field", J. Mech. Sci. Technol., 28(9), 3511-3516. https://doi.org/10.1007/s12206-014-0811-1
  57. Kim, S.-E., Thai, H.-T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89(2), 197-205. https://doi.org/10.1016/j.compstruct.2008.07.017
  58. Kolahdouzan, F., Arani, A.G. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., Int. J., 26(3), 273-287. http://dx.doi.org/10.12989/scs.2018.26.3.273
  59. Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7
  60. Maluf, N. and Williams, K. (2004), Introduction to Microelectromechanical Systems Engineering, Artech House.
  61. Mechab, I., Atmane, H.A., Tounsi, A. and Belhadj, H.A. (2010), "A two variable refined plate theory for the bending analysis of functionally graded plates", Acta Mechanica Sinica, 26(6), 941-949. https://doi.org/10.1007/s10409-010-0372-1
  62. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519
  63. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
  64. Murmu, T., McCarthy, M. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005
  65. Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93(12), 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028
  66. Narendar, S., Gupta, S. and Gopalakrishnan, S. (2012), "Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory", Appl. Math.Model., 36(9), 4529-4538. https://doi.org/10.1016/j.apm.2011.11.073
  67. Nguyen-Van, H., Mai-Duy, N., Karunasena, W. and Tran-Cong, T. (2011), "Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations", Comput. Struct., 89(7), 612-625. https://doi.org/10.1016/j.compstruc.2011.01.005
  68. Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
  69. Pacoste, C. and Eriksson, A. (1997), "Beam elements in instability problems", Comput. Methods Appl. Mech. Eng., 144(1-2), 163-197. https://doi.org/10.1016/S0045-7825(96)01165-6
  70. Panda, S. and Singh, B. (2013a), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
  71. Panda, S. and Singh, B. (2013b), "Thermal Postbuckling Behavior of Laminated Composite Spherical Shell Panel Using NFEM#", Mech. Based Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
  72. Pasternak, P. (1954), "On a new method of analysis of an elastic foundation by means of two constants [Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture]", Moscow: USSR.
  73. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  74. Phan, N. and Reddy, J. (1985), "Analysis of laminated composite plates using a higher-order shear deformation theory", Int. J. Numer. Methods Eng., 21(12), 2201-2219. https://doi.org/10.1002/nme.1620211207
  75. Pradhan, S. (2009), "Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory", Phys. Lett. A, 373(45), 4182-4188. https://doi.org/10.1016/j.physleta.2009.09.021
  76. Pradhan, S. and Phadikar, J. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1-2), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007
  77. Raghu, P., Preethi, K., Rajagopal, A. and Reddy, J.N. (2016), "Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects", Compos. Struct., 139, 13-29. https://doi.org/10.1016/j.compstruct.2015.11.068
  78. Rank, E., Krause, R. and Preusch, K. (1998), "On the accuracy of p-version elements for the Reissner-Mindlin plate problem", Int. J. Numer. Methods Eng., 43(1), 51-67. https://doi.org/10.1002/(SICI)1097-0207(19980915)43:1<51::AID-NME382>3.0.CO;2-T
  79. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  80. Reddy, J. and Phan, N. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
  81. Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., Int. J., 16(2), 141-150. http://dx.doi.org/10.12989/gae.2018.16.2.141
  82. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
  83. Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0
  84. Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89
  85. Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7
  86. Shahsavari, D., Karami, B. and Li, L. (2018b), "Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model", Comptes Rendus Mecanique, 346(12), 1216-1232. https://doi.org/10.1016/j.crme.2018.08.011
  87. Shahsavari, D., Karami, B. and Li, L. (2018c), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
  88. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018d), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
  89. She, G.-L., Ren, Y.-R., Yuan, F.-G. and Xiao, W.-S. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
  90. She, G.-L., Yuan, F.-G., Karami, B., Ren, Y.-R. and Xiao, W.-S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005
  91. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA Journal, 40(1), 137-146. https://doi.org/10.2514/2.1622
  92. Shimpi, R. and Patel, H. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43(22-23), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
  93. Singh, S., Singh, J. and Shukla, K. (2013), "Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations", J. Mech. Sci. Technol., 27(2), 327-336. https://doi.org/10.1007/s12206-012-1249-y
  94. Stamoulis, K. and Giannakopoulos, A. (2012), "A study of size effects and length scales in fracture and fatigue of metals by second gradient modelling", Fatigue Fract. Eng. Mater. Struct., 35(9), 852-860. https://doi.org/10.1111/j.1460-2695.2012.01668.x
  95. Thai, H.-T. and Kim, S.-E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52(4), 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002
  96. Thai, H.-T. and Kim, S.-E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54(1), 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007
  97. Wang, X., Shen, J., Liu, Y., Shen, G. and Lu, G. (2012), "Rigorous van der Waals effect on vibration characteristics of multi-walled carbon nanotubes under a transverse magnetic field", Appl. Math. Model., 36(2), 648-656. https://doi.org/10.1016/j.apm.2011.07.017
  98. Winkler, E. (1867), "Die Lehre von Elastizitat und Festigkeit (The theory of elasticity and stiffness)", H. Domenicus, Prague, Czech Republic.
  99. Zhang, Y., Liu, G. and Xie, X. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404
  100. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.643
  2. Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2019, https://doi.org/10.12989/scs.2021.40.3.355