DOI QR코드

DOI QR Code

Studies on vibration control effects of a semi-active impact damper for seismically excited nonlinear building

  • Lu, Zheng (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Zhang, Hengrui (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Masri, Sami F. (Sonny Astani Department of Civil and Environmental Engineering, University of Southern California)
  • Received : 2019.02.28
  • Accepted : 2019.03.10
  • Published : 2019.07.25

Abstract

The semi-active impact damper (SAID) is proposed to improve the damping efficiency of traditional passive impact dampers. In order to investigate its damping mechanism and vibration control effects on realistic engineering structures, a 20-story nonlinear benchmark building is used as the main structure. The studies on system parameters, including the mass ratio, damping ratio, rigid coefficient, and the intensity of excitation are carried out, and their effects both on linear and nonlinear indexes are evaluated. The damping mechanism is herein further investigated and some suggestions for the design in high-rise buildings are also proposed. To validate the superiority of SAID, an optimal passive particle impact damper ($PID_{opt}$) is also investigated as a control group, in which the parameters of the SAID remain the same, and the optimal parameters of the $PID_{opt}$ are designed by differential evolution algorithm based on a reduced-order model. The numerical simulation shows that the SAID has better control effects than that of the optimized passive particle impact damper, not only for linear indexes (e.g., root mean square response), but also for nonlinear indexes (e.g., component energy consumption and hinge joint curvature).

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Afsharfard, A. and Farshidianfar, A. (2013), "Free vibration analysis of nonlinear resilient impact dampers", Nonlinear Dynam., 73(1-2),155-166. https://doi.org/10.1007/s11071-013-0775-1
  2. Ahmad, N., Ranganath, R. and Ghosal, A. (2017), "Modeling and experimental study of a honeycomb beam filled with damping particles", J.Sound Vib., 391, 20-34. https://doi.org/10.1016/j.jsv.2016.11.011.
  3. Bakre, S.V. and Jangid, R.S. (2004), "Optimum multiple tuned mass dampers for base excited damped main system", Int. J. Struct. Stab. Dynam., 4(4), 527-542. https://doi.org/10.1142/S0219455404001367.
  4. Bakre, S.V. and Jangid, R.S. (2007), "Optimum parameters of tuned mass damper for damped main system", Struct. Control Health Monit., 14(3), 448-470. https://doi.org/10.1002/stc.166.
  5. Bekdas, G. and Nigdeli, S.M. (2013), "Mass ratio factor for optimum tuned mass damper strategies", Int. J. Mech. Sci., 71, 68-84. https://doi.org/10.1016/j.ijmecsci.2013.03.014.
  6. Cheng, C.C. and Wang, J.Y. (2003), "Free vibration analysis of a resilient impact damper", Int. J. Mech. Sci., 45(4), 589-604. https://doi.org/10.1016/S0020-7403(03)00116-4.
  7. Chung, L.L., Lai, Y.A., Yang, C.S.W., Lien, K.H. and Wu, L.Y. (2013), "Semi-active tuned mass dampers with phase control", J. Sound Vib., 332(15), 3610-3625. https://doi.org/10.1016/j.jsv.2013.02.008.
  8. Dai, K.S., Wang, J.Z., Mao, R.F., Lu, Z. and Chen, S.E. (2017), "Experimental investigation on dynamic characterization and seismic control performance of a TLPD system", Struct. Des. Tall Spec. Build., 26(7), e1350. https://doi.org/10.1002/tal.1350.
  9. Darabi, B. and Rongong, J.A, (2012) "Polymeric particle dampers under steady-state vertical vibrations", J. Sound Vib., 331(14), 3304-3316. https://doi.org/10.1016/j.jsv.2012.03.005.
  10. De Angelis, M., Perno, S. and Reggio, A. (2012), "Dynamic response and optimal design of structures with large mass ratio TMD", Earthq. Eng. Struct. D., 41(1), 41-60. https://doi.org/10.1002/eqe.1117.
  11. Egger, P. and Caracoglia, L. (2015), "Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation", J. Sound Vib., 353(1), 38-57. https://doi.org/10.1016/j.jsv.2015.05.003.
  12. Fu, B., Jiang, H.J. and Wu, T. (2018), "Experimental study of seismic response reduction effects of particle damper using substructure shake table testing method", Struct. Control Health Monit., e2295. DOI:10.1002/stc.2295.
  13. Fujino, Y. and Abe, M. (1993), "Design formulas for tuned mass dampers based on a perturbation technique", Earthq. Eng. Struct. D., 22(10), 833-854. https://doi.org/10.1002/eqe.4290221002.
  14. Han, B.K. and Li, C.X. (2008), "Characteristics of linearly distributed parameter-based multiple-tuned mass dampers", Struct. Control Health Monit., 15(6), 839-856. https://doi.org/10.1002/stc.222.
  15. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T.P. (1997), "Structural control: past, present, and future", J. Eng.Mech. - ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
  16. Jonathan, S. and Egidio, R. (2016), "Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations", Smart Struct. Syst., 17(2), 231-256. http://dx.doi.org/10.12989/sss.2016.17.2.231.
  17. Li, S. and Tang, J. (2017), "On vibration suppression and energy dissipation using tuned mass particle damper", J. Vib. Acoust., 139, 011008. doi: 10.1115/1.4034777.
  18. Lin, C.C. and Lin, G.L. (2010), "Wang JF. Protection of seismic structures using semi-active friction TMD", Earthq. Eng. Struct. D., 39(6), 635-659. https://doi.org/10.1002/eqe.961.
  19. Lu, X.L., Liu, Z.P. and Lu, Z. (2017a), "Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation", Struct. Control Health Monit., 24(12), e2033. https://doi.org/10.1002/stc.2033.
  20. Lu, X.L., Zhang, Q., Weng, D.G., Zhou, Z.G., Wang, S.S., Mahin, S.A, Ding, S.W. and Qian, F. (2017b), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monit., 24(3), e1882. https://doi.org/10.1002/stc.1882.
  21. Lu, Z., Lu, X.L. and Masri, S.F. (2010), "Studies of the performance of particle dampers under dynamic loads", J. Sound Vib., 329(26), 5415-5433. https://doi.org/10.1016/j.jsv.2010.06.027.
  22. Lu, Z., Masri, S.F. and Lu, X.L. (2011), "Parametric studies of the performance of particle dampers under harmonic excitation", Struct. Control Health Monit., 18(1), 79-98. https://doi.org/10.1002/stc.359.
  23. Lu, Z., Chen, X.Y., Lu, X.L. and Yang, Z. (2016a), "Shaking table test and numerical simulation of an RC frame-core tube structure for earthquake-induced collapse", Earthq. Eng. Struct. D., 45(9), 1537-1556. https://doi.org/10.1002/eqe.2723.
  24. Lu, Z., Wang, D.C., Masri, S.F. and Lu, X.L. (2016b), "An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers", Smart Struct. Syst., 18(1), 93-115. http://dx.doi.org/10.12989/sss.2016.18.1.093.
  25. Lu, Z., Chen, X.Y., Li, X.W. and Li, P.Z. (2017c), "Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges", Struct. Eng. Mech., 62(1), 55-64. https://doi.org/10.12989/sem.2017.62.1.055.
  26. Lu, Z., Chen, X.Y., Zhang, D.C. and Dai K.S. (2017d), "Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation", Earthq. Eng. Struct. D., 46(5), 697-714. https://doi.org/10.1002/eqe.2826.
  27. Lu, Z., Chen, X.Y. and Zhou, Y (2017e), "An equivalent method for optimization of particle tuned mass damper based on experimental parametric study", J. Sound Vib., 419, 571-584. https://doi.org/10.1016/j.jsv.2017.05.048.
  28. Lu, Z., Yang, Y.L., Lu, X.L. and Liu, C.Q. (2017f), "Preliminary study on the damping effect of a lateral damping buffer under a debris flow load", Appl. Sciences-Basel, 7(2), 201. https://doi.org/10.3390/app7020201.
  29. Lu, Z., Huang, B., Zhang, Q. and Lu, X.L. (2018a), "Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations", J. Sound Vib., 421, 153-165. https://doi.org/10.1016/j.jsv.2017.10.035.
  30. Lu, Z., Huang, B. and Zhou, Y. (2018b), "Theoretical study and experimental validation on the energy dissipation mechanism of particle dampers", Struct. Control Health Monit., 25(4), e2125. https://doi.org/10.1002/stc.2125.
  31. Lu, Z., Li, K., Ouyang, Y.T. and Shan, J.Z. (2018c), "Performance-based optimal design of tuned impact damper for seismically excited nonlinear structure", Eng. Struct., 160, 314-327. https://doi.org/10.1016/j.engstruct.2018.01.042.
  32. Lu, Z., Wang, Z.X., Masri, S.F. and Lu, X.L. (2018d), "Particle Impact Dampers: Past, Present, and Future", Struct. Control Health Monit., 25, e2058. https://doi.org/10.1002/stc.2058.
  33. Lu, Z., Wang, Z.X., Zhou, Y. and Lu, X.L. (2018e), "Nonlinear dissipative devices in structural vibration control: A review", J. Sound Vib., 423, 18-49. https://doi.org/10.1016/j.jsv.2018.02.052.
  34. Masri, S.F., Miller, R.K., Dehghanyar, T.J. and Caughey, T.K. (1989), "Active parameter control of nonlinear vibrating structures", J. Appl.Mech., 56(3), 658-666. doi:10.1115/1.3176143.
  35. Masri, S.F. and Chavakula, S. (1994), "Control of intelligent nonlinear adaptive systems under earthquake excitation", J. Struct. Control, 1(1-2), 23-38. https://doi.org/10.1002/stc.4300010102.
  36. Nagarajaiah, S. and Jung, H. (2014a), "Smart tuned mass dampers: recent developments", Smart Struct. Syst., 13(2), 173-176. http://dx.doi.org/10.12989/sss.2014.13.2.173.
  37. Nagarajaiah, S. and Pasala D.T.R. (2014b), "Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change", Smart Struct. Syst., 13(2), 219-233. http://dx.doi.org/10.12989/sss.2014.13.2.219.
  38. Nakamura, Y. and Watanabe, K. (2016), "Effects of balanced impact damper in structures subjected to walking and vertical seismic excitations", Earthq. Eng. Struct. D., 45(1), 113-128. https://doi.org/10.1002/eqe.2619.
  39. Nayeri, R.D., Masri, S.F. and Caffrey, J.P. (2007), "Studies of the performance of multi-unit impact dampers under stochastic excitation", J. Vib. Acoust., 129(2), 239-251. doi:10.1115/1.2346694.
  40. Ohtori, Y., Christenson, R.E., Spencer, B.F. and Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear building", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  41. Sanchez, M. and Manuel Carlevaro, C (2013), "Nonlinear dynamic analysis of an optimal particle damper", J. Sound Vib., 332(8), 2070-2080. https://doi.org/10.1016/j.jsv.2012.09.042.
  42. Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
  43. Sun, C. and Nagarajaiah, S. (2014a), "Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations", Struct. Control Health Monit., 21(6), 890-906. https://doi.org/10.1002/stc.1620.
  44. Sun, C., Nagarajaiah, S. and Dick, A.J. (2014b), "Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation", Smart Struct. Syst., 13(2), 319-341. http://dx.doi.org/10.12989/sss.2014.13.2.319.
  45. Sun, C. (2018), "Semi-active Control of Offshore Wind Turbines under Multi-Hazards", Mech. Syst. Signal Pr., 99, 285-305. https://doi.org/10.1016/j.ymssp.2017.06.016.
  46. Tributsch, A. and Adam, C. (2012), "Evaluation and analytical approximation of tuned mass damper performance in an earthquake environment", Smart Struct. Syst., 10(10), 1-25. http://dx.doi.org/10.12989/sss.2012.10.2.155.
  47. Tsai, H.C. and Lin, G.C. (1993), "Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems", Earthq. Eng. Struct. D., 22(11), 957-973. https://doi.org/10.1002/eqe.4290221104.
  48. Wang, Y., Liu, B., Tian, A. and Wei, D. (2016), "Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions", J. Sound Vib., 371, 35-55. https://doi.org/10.1016/j.jsv.2016.01.056.
  49. Wang, Y., Liu, B., Tian, A., Wei, D. (2019), "Prediction methods for the damping effect of multi-unit particle dampers based on the cyclic iterations of a single-unit particle damper", J. Sound Vib., 443, 341-361. https://doi.org/10.1016/j.jsv.2018.10.035.
  50. Wongprasert, N., Symans, M.D. (2004), "Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building", J. Eng. Mech., 130(4), 401-406. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(401).
  51. Xu, Z.D., Sha, L.F. and Zhang, X.C. (2013), "Design, performance test and analysis on magnetorheological damper for earthquake mitigation", Struct. Control Health Monit., 20(6), 956-970. https://doi.org/10.1002/stc.1509.
  52. Xu, Z.D., Suo, S. and Lu, Y. (2016a), "Vibration control of platform structures with magnetorheological elastomer isolators based on an improved SAVS law", Smart Materi. Struct., 25, 065002. https://doi.org/10.1088/0964-1726/25/6/065002
  53. Xu, Z.D., Xu F.H. and Chen, X. (2016b), "Intelligent Vibration Isolation and Mitigation of a Platform by Using MR and VE Devices", J. Aerosp. Eng., 29(4), 04016010. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000604 .
  54. Yao, B., Chen, Q., Xiang, H.Y. and Gao, X. (2014), "Experimental and theoretical investigation on dynamic properties of tuned particle damper", Int. J. Mech. Sci., 80, 122-130. https://doi.org/10.1016/j.ijmecsci.2014.01.009.
  55. Zhang, K., Xi, Y.H., Chen, T.N. and Ma, Z.H. (2018), "Experimental studies of tuned particle damper: Design and characterization", Mech. Syst. Signal Pr., 99, 219-228. https://doi.org/10.1016/j.ymssp.2017.06.007.