Abstract
Recently, in order to effectively test deep neural network model for image processing application, researches have actively conducted to automatically generate data in corner-case that is not correctly predicted by the model. This paper proposes test data generation method that selects arbitrary words from input of system and transforms them into synonyms in order to test the bug reporter automatic assignment system based on sentence classification deep neural network model. In addition, we compare and evaluate the case of using proposed test data generation and the case of using existing difference-inducing test data generations based on various neuron coverages.
최근 이미지 처리 응용을 위한 심층 신경망 모델의 효과적 테스팅을 위해 해당 모델이 올바르게 예측하지 못하는 코너 케이스에 해당하는 행동을 보이는 데이터를 자동 생성하는 연구가 활발히 진행되고 있다. 본 논문은 문장 분류 심층 신경망 모델에 기반하고 있는 버그 담당자 자동 배정 시스템의 테스트를 위해 입력 데이터인 버그 리포트의 내용에서 임의의 단어를 선택해 동의어로 변형하는 테스트 데이터 생성기법을 제안한다. 그리고 제안하는 테스트 데이터 생성 기법을 사용한 경우와 기존의 차이 유발 테스트 데이터 생성 기법을 사용했을 경우를 다양한 뉴런 기반 커버리지를 중심으로 비교 평가한다.