References
- A. Belarbi and M. Benchohra, Existence results for nonlinear boundary-value problems with integral boundary conditions, Electron. J. Dierential Equations 2005 (2005), no. 06, 10 pp.
- S. Bellew and E. O'Riordan, A parameter robust numerical method for a system of two singularly perturbed convection-diffusion equations, Appl. Numer. Math. 51 (2004), no. 2-3, 171-186. https://doi.org/10.1016/j.apnum.2004.05.006
- M. Benchohra, S. Hamani, and J. J. Nieto, The method of upper and lower solutions for second order differential inclusions with integral boundary conditions, Rocky Mountain J. Math. 40 (2010), no. 1, 13-26. https://doi.org/10.1216/RMJ-2010-40-1-13
- A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009), no. 1, 364-371. https://doi.org/10.1016/j.na.2007.12.007
- L. Bougoffa, A coupled system with integral conditions, Appl. Math. E-Notes 4 (2004), 99-105.
- M. Cakir and G. M. Amiraliyev, A nite difference method for the singularly perturbed problem with nonlocal boundary condition, Appl. Math. Comput. 160 (2005), no. 2, 539-549. https://doi.org/10.1016/j.amc.2003.11.035
- J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (1963), pp. 155-160. https://doi.org/10.1090/qam/160437
- J. R. Cannon and J. van der Hoek, Diffusion subject to the specification of mass, J. Math. Anal. Appl. 115 (1986), no. 2, 517-529. https://doi.org/10.1016/0022-247X(86)90012-0
- Z. Cen, Parameter-uniform nite dierence scheme for a system of coupled singularly perturbed convection-diffusion equations, Int. J. Comput. Math. 82 (2005), no. 2, 177-192. https://doi.org/10.1080/0020716042000301798
- Y. S. Choi and K.-Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal. 18 (1992), no. 4, 317-331. https://doi.org/10.1016/0362-546X(92)90148-8
- W. A. Day, Parabolic equations and thermodynamics, Quart. Appl. Math. 50 (1992), no. 3, 523-533. https://doi.org/10.1090/qam/1178432
- P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Robust computational techniques for boundary layers, Applied Mathematics (Boca Raton), 16, Chapman & Hall/CRC, Boca Raton, FL, 2000.
- M. Kudu and G. M. Amiraliyev, Finite difference method for a singularly perturbed dierential equations with integral boundary condition, Int. J. Math. Comput. 26 (2015), no. 3, 72-79.
- H. Li and F. Sun, Existence of solutions for integral boundary value problems of second-order ordinary dierential equations, Bound. Value Probl. 2012 (2012), 147, 7 pp. https://doi.org/10.1186/1687-2770-2012-147
- J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, revised edition, World Scientic Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. https://doi.org/10.1142/9789814390743
- S. Xi, M. Jia, and H. Ji, Positive solutions of boundary value problems for systems of second-order differential equations with integral boundary condition on the half-line, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), No. 31, 13 pp.
- Z. Yang, Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Anal. 62 (2005), no. 7, 1251-1265. https://doi.org/10.1016/j.na.2005.04.030