DOI QR코드

DOI QR Code

NUMERICAL METHOD FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION DIFFUSION EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Received : 2018.05.23
  • Accepted : 2018.08.29
  • Published : 2019.07.31

Abstract

A class of systems of singularly perturbed convection diffusion type equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The suggested method is of almost first order convergence. An error estimate is derived in the discrete maximum norm. Numerical examples are presented to validate the theoretical estimates.

Keywords

References

  1. A. Belarbi and M. Benchohra, Existence results for nonlinear boundary-value problems with integral boundary conditions, Electron. J. Dierential Equations 2005 (2005), no. 06, 10 pp.
  2. S. Bellew and E. O'Riordan, A parameter robust numerical method for a system of two singularly perturbed convection-diffusion equations, Appl. Numer. Math. 51 (2004), no. 2-3, 171-186. https://doi.org/10.1016/j.apnum.2004.05.006
  3. M. Benchohra, S. Hamani, and J. J. Nieto, The method of upper and lower solutions for second order differential inclusions with integral boundary conditions, Rocky Mountain J. Math. 40 (2010), no. 1, 13-26. https://doi.org/10.1216/RMJ-2010-40-1-13
  4. A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009), no. 1, 364-371. https://doi.org/10.1016/j.na.2007.12.007
  5. L. Bougoffa, A coupled system with integral conditions, Appl. Math. E-Notes 4 (2004), 99-105.
  6. M. Cakir and G. M. Amiraliyev, A nite difference method for the singularly perturbed problem with nonlocal boundary condition, Appl. Math. Comput. 160 (2005), no. 2, 539-549. https://doi.org/10.1016/j.amc.2003.11.035
  7. J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (1963), pp. 155-160. https://doi.org/10.1090/qam/160437
  8. J. R. Cannon and J. van der Hoek, Diffusion subject to the specification of mass, J. Math. Anal. Appl. 115 (1986), no. 2, 517-529. https://doi.org/10.1016/0022-247X(86)90012-0
  9. Z. Cen, Parameter-uniform nite dierence scheme for a system of coupled singularly perturbed convection-diffusion equations, Int. J. Comput. Math. 82 (2005), no. 2, 177-192. https://doi.org/10.1080/0020716042000301798
  10. Y. S. Choi and K.-Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal. 18 (1992), no. 4, 317-331. https://doi.org/10.1016/0362-546X(92)90148-8
  11. W. A. Day, Parabolic equations and thermodynamics, Quart. Appl. Math. 50 (1992), no. 3, 523-533. https://doi.org/10.1090/qam/1178432
  12. P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Robust computational techniques for boundary layers, Applied Mathematics (Boca Raton), 16, Chapman & Hall/CRC, Boca Raton, FL, 2000.
  13. M. Kudu and G. M. Amiraliyev, Finite difference method for a singularly perturbed dierential equations with integral boundary condition, Int. J. Math. Comput. 26 (2015), no. 3, 72-79.
  14. H. Li and F. Sun, Existence of solutions for integral boundary value problems of second-order ordinary dierential equations, Bound. Value Probl. 2012 (2012), 147, 7 pp. https://doi.org/10.1186/1687-2770-2012-147
  15. J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, revised edition, World Scientic Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. https://doi.org/10.1142/9789814390743
  16. S. Xi, M. Jia, and H. Ji, Positive solutions of boundary value problems for systems of second-order differential equations with integral boundary condition on the half-line, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), No. 31, 13 pp.
  17. Z. Yang, Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Anal. 62 (2005), no. 7, 1251-1265. https://doi.org/10.1016/j.na.2005.04.030