References
- M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003. https://doi.org/10.1007/978-3-642-18245-7
- A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer-Verlag, Berlin, 1978.
- G. Catino, L. Gremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337
- W.-R. Dai, D.-X. Kong, and K. Liu, Hyperbolic geometric flow (I): short-time existence and nonlinear stability, Pure Appl. Math. Q. 6 (2010), no. 2, 331-359. https://doi.org/10.4310/PAMQ.2010.v6.n2.a3
- B. Gambir, Surfaces alignes geod esiques toutes fermees. etude speciale de cless qui sont de revolution, Bulletin des Sciences Math., (2 eme Serie Tome XLIX), Mars 1925.
- R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diffierential Geom. 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
- D. Jane, The Ricci flow does not preserve the set of Zoll metrics, Diffierential Geom. Appl. 54 (2017), part B, 397-401. https://doi.org/10.1016/j.difgeo.2017.07.005
- R. Michel, Problemes d'analyse geometrique lies a la conjecture de Blaschke, Bull. Soc. Math. France 101 (1973), 17-69. https://doi.org/10.24033/bsmf.1751
- A. Pressley, Elementary Diffierential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2001. https://doi.org/10.1007/978-1-4471-3696-5
- A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Diffierential Geometry 9 (1974), 513-517. http://projecteuclid.org/euclid.jdg/1214432547 https://doi.org/10.4310/jdg/1214432547
- O. Zoll, Ueber Flachen mit Scharen geschlossener geodatischer Linien, Math. Ann. 57 (1903), no. 1, 108-133. https://doi.org/10.1007/BF01449019