DOI QR코드

DOI QR Code

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin (School of Textiles Engineering, Henan University of Engineering) ;
  • Zi, Xingchen (School of Textiles Engineering, Henan University of Engineering) ;
  • Shi, Wenying (School of Textiles Engineering, Henan University of Engineering) ;
  • Qin, Longwei (School of Textiles Engineering, Henan University of Engineering) ;
  • Zhang, Haixia (School of Textiles Engineering, Henan University of Engineering) ;
  • Qin, Xiaohong (School of Textiles Engineering, Henan University of Engineering)
  • 투고 : 2018.08.16
  • 심사 : 2019.03.20
  • 발행 : 2019.07.25

초록

Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.

키워드

참고문헌

  1. Alkhudhiri, A., Darwish, N. and Hilal, N. (2012), "Membrane distillation, a comprehensive review", Desalination., 287, 2-18. https://doi.org/10.1016/j.desal.2011.08.027
  2. Ameen, S., Park, D.R., Akhtar, M.S. and Shin, H.S. (2016), "Lotus-leaf like ZnO nanostructures based electrode for the fabrication of ethyl acetate chemical sensor", Mater. Lett., 164, 562-566. https://doi.org/10.1016/j.matlet.2015.11.055
  3. Chang, J., Zuo, J., Lu, K.J. and Chung, T.S. (2019), "Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy", Desalination., 449, 16-25. https://doi.org/10.1016/j.desal.2018.10.008
  4. Chang, H.H., Tsai, C.H., Wei, H.C. and Cheng, L.P. (2014), "Effect of structure of PVDF membranes on the performance of membrane distillation", Membr. Water Treat., 5(1), 41-56. https://doi.org/10.12989/mwt.2014.5.1.041
  5. Chen, F.F., Jia, Y., Wang, Q.G., Cao, X.B., Li, Y.H., Lin, Y., Cui, X. and Wei, J.Q. (2018), "Strong and super-hydrophobic hybrid carbon nanotube films with superior loading capacity", Carbon., 137, 88-92. https://doi.org/10.1016/j.carbon.2018.05.008
  6. Chen, K.K., Xiao, C.F., Huang, Q.L., Liu, H., Liu, H.L., Wu, Y.J. and Liu, Z. (2015), "Study on vacuum membrane distillation (VMD) using FEP hollow fiber membrane", Desalination., 375, 24-32. https://doi.org/10.1016/j.desal.2015.07.021
  7. Drioli, E., Ali, A., Simone, S., Macedonio, F., Al-Jlil, S.A., Al-Shabonah, F.S., Al-Romaih, H.S., Al-Harbi, A., Figoli, O. and Criscuoli, A. (2013), "Novel PVDF hollow fibermembranes for vacuum and direct contact membrane distillation applications", Sep. Purif. Technol., 115, 27-38. https://doi.org/10.1016/j.seppur.2013.04.040
  8. Edwie, F, Teoh, M.M. and Chung, T.S. (2012), "Effects of additives on dual-layer hydrophobic-hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance", Chem. Eng. Sci., 68, 567-578. https://doi.org/10.1016/j.ces.2011.10.024
  9. Efome, J.E., Baghbanzadeh, M., Rana, D., Matsuura, T. and Lan, C.Q. (2015), "Effects of superhydrophobic $SiO_2$ nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation", Desalination., 373, 47-57. https://doi.org/10.1016/j.desal.2015.07.002
  10. Fang, H., Gao, J.F., Wang, H.T. and Chen, C.S. (2012), "Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process", J. Membr. Sci., 403-404, 41- 46. https://doi.org/10.1016/j.memsci.2012.02.011
  11. Ganesh, B.M., Isloor, A.M. and Ismail, A.F. (2013), "Enhanced hydrophilicity and saltrejection study of graphene oxidepolysulfone mixed matrix membrane", Desalination., 313, 199-207. https://doi.org/10.1016/j.desal.2012.11.037
  12. Garcia-Fernandez, L., Garcia-Payo, M.C. and Khayet, M. (2014), "Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes", J. Membr. Sci., 468, 324-338. https://doi.org/10.1016/j.memsci.2014.06.014
  13. Garcia-Fernandez, L., Garcia-Payo, M.C. and Khayet, M. (2017a), "Mechanism of formation of hollow fiber membranes for membrane distillation: 1. Inner coagulation power effect on morphological characteristics" J. Membr. Sci., 542, 456-468 https://doi.org/10.1016/j.memsci.2017.03.036
  14. Garcia-Fernandez, L., Garcia-Payo, M.C. and Khayet, M. (2017b), "Mechanism of formation of hollow fiber membranes for membrane distillation: 2. Outer coagulation power effect on morphological characteristics", J. Membr. Sci., 542, 469-481. https://doi.org/10.1016/j.memsci.2017.03.038
  15. Garcia-Payo, M.C., Essalhi, M. and Khayet, M. (2009), "Preparation and characterization of PVDF-HFP copolymer hollow fiber membranes for membrane distillation", Desalination., 245, 469-473. https://doi.org/10.1016/j.desal.2009.02.010
  16. Garcia-Payo, M.C., Essalhi and M., Khayet, M. (2010), "Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes", J. Membr. Sci., 347, 209-219. https://doi.org/10.1016/j.memsci.2009.10.026
  17. Gryt, M. (2013), "Osmotic membrane distillation with continuous regeneration of stripping solution by natural evaporation", Membr. Water Treat., 4(4), 223- 236. https://doi.org/10.12989/mwt.2013.4.4.223
  18. Guo, H., Peng, C.S., Ma, W.F., Yuan, H.T. and Yang, K. (2017), "Study on the heat and mass transfer in ultrasonic assisting vacuum membrane distillation", Membr. Water Treat., 8(3), 293-310. http://dx.doi.org/10.12989/mwt.2017.8.3.293.
  19. Jin, Z., Yang, D.L., Zhang, S.H. and Jian, X.G. (2008), "Hydrophobic modification of poly(phthalazinone ether sulfone ketone) hollow fiber membrane for vacuum membrane distillation", J. Membr. Sci., 310, 20-27. https://doi.org/10.1016/j.memsci.2007.10.021.
  20. Khayet, M., Cojocaru, C., Essalhi, M., Garcia-Payo, M.C. and Arribas, P.L. (2012), "Hollow fiber spinning experimental design and analysis of defects for fabrication of optimized membranes for membrane distillation", Desalination., 287, 146-158. https://doi.org/10.1016/j.desal.2011.06.025.
  21. Kim, S., Park, K.Y. and Cho, J.W. (2017), "Evaluation of the efficiency of cleaning method in direct contact membrane distillation of digested livestock wastewater", Membr. Water Treat., 8(2), 113-123. http://dx.doi.org/10.12989/mwt.2017.8.2.113.
  22. Kim, S.J., Kim, T.H., Kong, J.H., Kim, Y.S., Cho, C.R., Kim, S.H., Lee, D.W., Park, J.K., Lee, D.Y. and Kim, J.M. (2012), "Dualscale artificial lotus leaf fabricated by fully nonlithographic simple approach based on sandblasting and anodic aluminum oxidation techniques", Appl. Surf. Sci., 263, 648-654. https://doi.org/10.1016/j.apsusc.2012.09.127
  23. Li, H.B., Zhang, H.X., Qin, X.H. and Shi, W.Y. (2017), "Improved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGO", Appl. Surf. Sci., 407, 260-275. https://doi.org/10.1016/j.apsusc.2017.02.204.
  24. Liu, J., Wang, Q., Han, L. and Li, B.A. (2017), "Simulation of heat and mass transfer with cross-flow hollow fiber vacuum membrane distillation, The influence of fiber arrangement", Chem. Eng. Res. Des., 119, 12-22. https://doi.org/10.1016/j.cherd.2017.01.013.
  25. Loussif, N. and Orfi, J. (2016), "Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations", 7(1), 71-86. http://dx.doi.org/10.12989/mwt.2016.7.1.071.
  26. Lu, K.J., Zuo, J. and Chung, T.S. (2016), "Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation", J. Membr. Sci., 514, 165-175. https://doi.org/10.1016/j.memsci.2016.04.058.
  27. Lu, K.J., Zuo, J., Chang, J., Kuan, H.N. and Chung, T.S. (2018), "Omniphobic Hollow-Fiber Membranes for Vacuum Membrane Distillation", Environ. Sci. Technol., 52, 4472-4480. https://doi.org/10.1021/acs.est.8b00766.
  28. Meng, S., Mansouri, J., Ye, Y. and Chen, V. (2014), "Effect of templating agents on the properties and membrane distillation performance of $TiO_2$-coated PVDF membranes", J. Membr. Sci., 450, 48-59. https://doi.org/10.1016/j.memsci.2013.08.036.
  29. Mierzwa, J.C., Vecitis, C.D., Carvalho, J., Arieta, V. and Verlage, M. (2012), "Anion dopant effects on the structure and performance of polyethersulfone membranes", J. Membr. Sci., 421-422, 91-102. https://doi.org/10.1016/j.memsci.2012.06.039.
  30. Pangarkar, B.L., Deshmukh, S.K. and Thorat, P.V. (2017), "Multieffect air gap membrane distillation process for pesticide wastewater treatment", Membr. Water Treat., 8(6), 529-541. https://doi.org/10.12989/mwt.2017.8.6.529
  31. Peng, Y.L., Fan, H.W., Dong, Y.J., Song, Y.N. and Han, H. (2012a) "Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation". Appl. Surf. Sci., 258, 7872-7881. https://doi.org/10.1016/j.apsusc.2012.04.108.
  32. Peng, Y.L., Fan, H.W., Ge, J., Wang, S.B., Chen, P. and Jiang, Q. (2012b) "The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation", Appl. Surf. Sci., 263, 737-744. https://doi.org/10.1016/j.apsusc.2012.09.152.
  33. Racz, G., Kerker, S., Schmitz, O., Schnabel, B., Kovacs, Z., Vatai, G., Ebrahimi, M. and Czermak, P. (2015), "Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters", Membr. Water Treat., 6(3), 237-249. http://dx.doi.org/10.12989/mwt.2015.6.3.237.
  34. Shafiei, M. and Alpas, A.T. (2009), "Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces", Appl. Surf. Sci., 256, 710-719. https://doi.org/10.1016/j.apsusc.2009.08.047.
  35. Sun, A.C., Kosar, W., Zhang, Y.F. and Feng, X.S. (2014), "Vacuum membrane distillation for desalination of water using hollow fiber membranes", J. Membr. Sci., 455, 131-142. https://doi.org/10.1016/j.memsci.2013.12.055.
  36. Tang, N., Feng, C.L., Han, H.Y., Hua, X.X., Zhang, L., Xiang, J., Cheng, P.G., Du, W. and Wang, X.K. (2016), "High permeation flux polypropylene/ethylene vinyl acetate co-blending membranes via thermally induced phase separation for vacuum membrane distillation desalination", Desalination., 394, 44-55. https://doi.org/10.1016/j.desal.2016.04.024.
  37. Tang, Y.D., Li, N., Liu, A.J., Ding, S.K., Yi, C.H. and Liu, H. (2012), "Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation", Desalination., 287, 326-339. https://doi.org/10.1016/j.desal.2011.11.045.
  38. Teoh, M.M. and Chung, T.S. (2009), "Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes", Sep. Purif. Technol., 66, 229-236. https://doi.org/10.1016/j.seppur.2009.01.005.
  39. Tong, D.Q., Wang, X.Z., Ali, M., Lan, C.Q., Wang, Y., Drioli, E., Wang, Z.H. and Cui, Z.L. (2016), "Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation", Sep. Purif. Technol., 157, 1-8. https://doi.org/10.1016/j.seppur.2015.11.026.
  40. Wang, J., Zheng, L.B., Wu, Z.J., Zhang, Y. and Zhang, X.H. (2016), "Fabrication of hydrophobic flat sheet and hollow fibermembranes from PVDF and PVDF-CTFE for membrane distillation", J. Membr. Sci., 497, 183-193. https://doi.org/10.1016/j.memsci.2015.09.024.
  41. Wu, B., Tan, X.Y., Li, K. and Teo, W.K. (2006), "Removal of 1,1,1-trichloroethane from water using a polyvinylidene fluoride hollow fiber membrane module, Vacuum membrane distillation operation", Sep. Purif. Technol., 52, 301-309. https://doi.org/10.1016/j.seppur.2006.05.013.
  42. Xu, J.L., Furuswa, M. and Ito, A. (2006), "Air-sweep vacuum membrane distillation using fine silicone, rubber, hollow-fiber membranes", Desalination., 191, 223-231. https://doi.org/10.1016/j.desal.2005.08.015.
  43. Xu, J.L., Bettahalli, N.M.S., Chisca, S., Khalid, M.K., Ghaffour, N., Vilagines, R. and Nunes, S.P. (2018), "Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation", Desalination., 432, 32-39. https://doi.org/10.1016/j.desal.2017.12.014.
  44. Xu, Z.H., Liu, Z., Song, P.F., Xiao, C.F., Jian, Z., Bonyadi, S. and Chung, T.S. (2015), "Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation", J. Membr. Sci., 497, 239-247. https://doi.org/10.1016/j.memsci.2015.09.038.
  45. Xu, Z.H., Liu, Z., Song, P.F. and Xiao, C.F. (2017), "Fabrication of super-hydrophobic polypropylene hollow fiber membrane and its application in membrane distillation", Desalination., 414, 10-17. https://doi.org/10.1016/j.desal.2017.03.029.
  46. Yan, H.Q., Lu, X.L., Wu, C.R., Sun, X.C. and Tang, W.Y. (2017), "Fabrication of a super-hydrophobic polyvinylidene fluoride hollow fiber membrane using a particle coating process", J. Membr. Sci., 533, 130-140. https://doi.org/10.1016/j.memsci.2017.03.033.
  47. Zhang, J.H., Li, J.D., Duke, M., Xie, Z.L. and Gray, S. (2010), "Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement", J. Membr. Sci., 362, 517-528. https://doi.org/10.1016/j.memsci.2010.07.004.
  48. Zheng, Z.R., Gu, Z.Y., Huo, R.T. and Ye, Y.H. (2009), "Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution", Appl. Surf. Sci., 255, 7263-7267. https://doi.org/10.1016/j.apsusc.2009.03.084.
  49. Zhong, W.W., Hou, J.W., Yang, H.C. and Chen, V. (2017), "Superhydrophobic membranes via facile bio-inspired mineralization for vacuum membrane distillation", J. Membr. Sci., 540, 98-107. https://doi.org/10.1016/j.memsci.2017.06.033.
  50. Zhu, H.L., Wang, H.J., Wang, F., Guo, Y.H., Zhang, H.P. and Chen, J.Y. (2013), "Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation", J. Membr. Sci., 446, 145-153. https://doi.org/10.1016/j.memsci.2013.06.037.
  51. Zuo, J. and Chung, T.S. (2017a), "PVDF hollow fibers with novel sandwich structure and superior wetting resistance for vacuum membrane distillation", Desalination., 417, 94-101. https://doi.org/10.1016/j.desal.2017.05.022.
  52. Zuo, J., Chung, T.S., Brien, G.S.O. and Kosar, W. (2017b), "Hydrophobic/hydrophilic PVDF/Ultem(R) dual-layer hollow fibermembranes with enhanced mechanical properties for vacuum membrane distillation", J. Membr. Sci., 523, 103-110. https://doi.org/10.1016/j.memsci.2016.09.030.

피인용 문헌

  1. Mercapto-functionalized ordered mesoporous silica-modified PVDF membrane for efficiently scavenging Cd2+ from water vol.302, pp.no.pb, 2022, https://doi.org/10.1016/j.jenvman.2021.114103