DOI QR코드

DOI QR Code

Human Milk Microbiota: A Review

모유 미생물총에 대한 고찰

  • Lee, Ju-Eun (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Geun-Bae (Department of Animal Science and Technology, Chung-Ang University)
  • 이주은 (중앙대학교 동물생명공학과) ;
  • 김근배 (중앙대학교 동물생명공학과)
  • Received : 2019.03.11
  • Accepted : 2019.03.12
  • Published : 2019.03.31

Abstract

A common belief is that human milk is sterile. However, the development of culture-independent molecular methods, especially Next Generation Sequencing, has revealed that human milk harbors diverse and rich bacterial communities. Although studies aimed at characterizing the microbiota of human milk have produced different findings, Staphylococcus and Streptococcus are presumed to be normal members of the microbiota. Factors that influence variation in the microbiota are unclear; however, the postpartum time, route of delivery, maternal obesity, and health status may be influential. The origin of the microbiota is a hotly debated topic. Human milk bacteria are thought to be introduced through bacterial exposure of the mammary duct during breast feeding and/or the entero-mammary pathway from the maternal gastrointestinal tract. Although the exact mechanism related to the entero-mammary pathway is unknown, it is presumed that bacteria penetrate the intestinal epithelium and then migrate to the mammary gland, dendritic cells, and macrophages. In this review, various relevant studies are introduced.

Keywords

References

  1. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. and Dewhirst, F. E. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:5721-5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  2. Bertotto, A., Gerli, R., Castellucci, G., Scalise, F. and Vaccaro, R. 1991. Human milk lymphocytes bearing the gamma/delta T-cell receptor are mostly delta TCS1-positive cells. Immunology 74:360-361.
  3. Biagi, E., Quercia, S., Aceti, A., Beghetti, I., Rampelli, S., Turroni, S., Faldella, G., Candela, M., Brigidi, P. and Corvaglia, L. 2017. The bacterial ecosystem of mother's milk and infant's mouth and gut. Front. Microbiol. 8:1214. https://doi.org/10.3389/fmicb.2017.01214
  4. Bode, L. 2012. Human milk oligosaccharides: every baby needs a sugar mom. Glycobiology 22:1147-1162. https://doi.org/10.1093/glycob/cws074
  5. Cabrera-Rubio, R., Collado, M. C., Laitinen, K., Salminen, S., Isolauri, E. and Mira, A. 2012. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96:544-551. https://doi.org/10.3945/ajcn.112.037382
  6. Cephas, K. D., Kim, J., Mathai, R. A., Barry, K. A., Dowd, S. E., Meline, B. S. and Swanson, K. S. 2011. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE 6:e23503. https://doi.org/10.1371/journal.pone.0023503
  7. Chan, A. A., Bashir, M., Rivas, M. N., Duvall, K., Sieling, P. A., Pieber, T. R., Vaishampayan, P. A., Love, S. M. and Lee, D. J. 2016. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci. Rep. 6:28061. https://doi.org/10.1038/srep28061
  8. Collado, M. C., Delgado, S., Maldonado, A. and Rodriguez, J. M. 2009. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 48:523-528. https://doi.org/10.1111/j.1472-765X.2009.02567.x
  9. Collado, M. C., Laitinen, K., Salminen, S. and Isolauri, E. 2012. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72:77-85. https://doi.org/10.1038/pr.2012.42
  10. Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. and Knight, R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694-1697. https://doi.org/10.1126/science.1177486
  11. Fernandeza, L., Langaa, S., Martina, V., Maldonadoa, A., Jimeneza, E., Martind, R. and Rodrigueza, J. M. 2013. The human milk microbiota: origin and potential roles in health and disease. Pharmacol. Res. 69:1-10. https://doi.org/10.1016/j.phrs.2012.09.001
  12. Fetherston, C. 2001. Mastitis in lactating women: physiology or pathology? Breastfeed. Rev. 9:5-12.
  13. Fitzstevens, J. L., Smith, K. C., Hagadorn, J. I., Caimano, M. J., Matson, A. P. and Brownell, E. A. 2017. Systematic review of the human milk microbiota. Nutr. Clin. Pract. 32:354-364. https://doi.org/10.1177/0884533616670150
  14. Gao, Z., Perez-Perez, G. I., Chen, Y. and Blaser, M. J. 2010. Quantitation of major human cutaneous bacterial and fungal populations. J. Clin. Microbiol. 48:3575-3581. https://doi.org/10.1128/JCM.00597-10
  15. Gao, Z., Tseng, C., Pei, Z. and Blaser, M. J. 2007. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. USA. 104:2927-2932. https://doi.org/10.1073/pnas.0607077104
  16. Gonzalez, R., Maldonado, A., Martin, V., Mandomando, I., Fumado, V., Metzner, K. J., Sacoor, C., Fernandez, L., Macete, E., Alonso, P. L., Rodrigueza, J. M. and Menendez, C. 2013. Breast milk and gut microbiota in African mothers and infants from an area of high HIV prevalence. PLoS ONE 8:e80299. https://doi.org/10.1371/journal.pone.0080299
  17. Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J. and Young, A. C., NISC Comparative Sequencing Program, Bouffard, G. G., Blakesley, R. W., Murray, P. R., Green, E. D., Turner, M. L. and Segre, J. A. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190-1192. https://doi.org/10.1126/science.1171700
  18. Gronlund, M. M., Gueimonde, M., Laitinen, K., Kociubinski, G., Gronroos, T., Salminen, S. and Isolauri, E. 2007. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin. Exp. Allergy 37:1764-1772. https://doi.org/10.1111/j.1365-2222.2007.02849.x
  19. Gueimonde, M., Laitinen, K., Salminen, S. and Isolauri, E. 2007. Breast milk: a source of bifidobacteria for infant gut development and maturation. Neonatology 92:64-66. https://doi.org/10.1159/000100088
  20. Heikkila, M. P. and Saris, P. E. 2003. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95:471-478. https://doi.org/10.1046/j.1365-2672.2003.02002.x
  21. Hunt, K. M., Foster, J. A., Forney, L. J., Schutte, U. M., Beck, D. L., Abdo, Z., Fox, L. K., Williams, J. E., McGuire, M. K. and McGuire, M. A. 2011. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6:e21313. https://doi.org/10.1371/journal.pone.0021313
  22. Hunt, K. M., Preuss, J., Nissan, C., Davlin, C. A., Williams, J. E., Shafii, B., Richardson, A. D., McGuire, M. K., Bode, L. and McGuire, M. A. 2012. Human milk oligosaccharides promote the growth of staphylococci. Appl. Environ. Microb. 78:4763-4770. https://doi.org/10.1128/AEM.00477-12
  23. Jimenez, E., de Andres, J., Manrique, M., Pareja-Tobes, P., Tobes, R., Martinez-Blanch, J. F., Codoner, F. M., Ramon, D., Fernandez, L. and Rodriguez, J. M. 2015. Metagenomic analysis of milk of healthy and mastitis-suffering women. J. Hum. Lact. 31:406-415. https://doi.org/10.1177/0890334415585078
  24. Jimenez, E., Delgado, S., Maldonado, A., Arroyo, R., Albujar, M., Garcia, N., Jariod, M., Fernandez, L., Gomez, A. and Rodriguez, J. M. 2008a. Staphylococcus epidermidis : a ifferential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 8:143. https://doi.org/10.1186/1471-2180-8-143
  25. Jimenez, E., Fernandez, L., Delgado, S., Garcia, N., Albujar, M., Gomez, A. and Rodriguez, J. M. 2008b. Assessment of the bacterial diversity of human colostrum by culturalbased techniques: analysis of the staphylococcal and enterococcal populations. Res. Microbiol. 159:595-601. https://doi.org/10.1016/j.resmic.2008.09.001
  26. Jost, T., Lacroix, C., Braegger, C. and Chassard, C. 2013. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Brit. J. Nutr. 110:1253-1262. https://doi.org/10.1017/S0007114513000597
  27. Jost, T., Lacroix, C., Braegger, C. and Chassard, C. 2015. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 73:426-437. https://doi.org/10.1093/nutrit/nuu016
  28. Kelsey, J. A., Bayles, K. W., Shafii, B. and McGuire, M. A. 2006. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41:951-961. https://doi.org/10.1007/s11745-006-5048-z
  29. Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. and Martinez-Costa, C. 2014. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34:599-605. https://doi.org/10.1038/jp.2014.47
  30. Kvist, L. J. 2010. Toward a clarification of the concept of mastitis as used in empirical studies of breast inflammation during lactation. J. Hum. Lact. 26:53-59. https://doi.org/10.1177/0890334409349806
  31. Kvist, L. J., Wilde Larsson, B., Hall-Lord, M. L., Steen, A. and Schalen, C. 2008. The role of bacteria in lactational mastitis and some considerations of the use of antibiotic treatment. Int. Breastfeed. J. 3:6. https://doi.org/10.1186/1746-4358-3-6
  32. Langa, S. 2006. Interactions between lactic acid bacteria, intestinal epithelial cells and immune cells. Development of in vitro models. Ph.D. dissertation. Complutense University of Madrid, Madrid, Spain.
  33. Latuga, M. S., Stuebe, A. and Seed, P. C. 2014. A review of the source and function of microbiota in breast milk. Semin. Reprod. Med. 32:68-73. https://doi.org/10.1055/s-0033-1361824
  34. Macpherson, A. J. and Uhr, T. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662-1665. https://doi.org/10.1126/science.1091334
  35. Martin, R., Jimenez, E., Heilig, H. G., Fernandez, L., Marin, M. L., Zoetendal, E. G. and Rodriguez, J. M. 2009. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microb. 75:965-969. https://doi.org/10.1128/AEM.02063-08
  36. Martin, R., Langa, S., Reviriego, C., Jimenez, E., Marin, M. L., Olivares, M., Boza, J., Jimenez, J., Fernandez, L., Xaus, J. and Rodriguez, J. M. 2004. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci. Tech. 15:121-127. https://doi.org/10.1016/j.tifs.2003.09.010
  37. Martin, R., Langa, S., Reviriego, C., Jiminez, E., Marin, M. L., Xaus, J., Fernandez, L. and Rodriguez, J. M. 2003. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143:754-758. https://doi.org/10.1016/j.jpeds.2003.09.028
  38. McGuire, M. K. and McGuire, M. A. 2015. Human milk: mother nature's prototypical probiotic food? Adv. Nutr. 6:112-123. https://doi.org/10.3945/an.114.007435
  39. McGuire, M. K. and McGuire, M. A. 2017. Got bacteria? The astounding, yet not-sosurprising, microbiome of human milk. Curr. Opin. Biotech. 44:63-38. https://doi.org/10.1016/j.copbio.2016.11.013
  40. Olivares, M., Albrecht, S., De Palma, G., Ferrer, M. D., Castillejo, G., Schols, H. A. and Sanz, Y. 2014. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur. J. Nutr. 54:119-128. https://doi.org/10.1007/s00394-014-0692-1
  41. Osterman, K. L. and Rahm, V. A. 2000. Lactation mastitis: bacterial cultivation of breast milk, symptoms, treatment, and outcomes. J. Hum. Lact. 16:297-302. https://doi.org/10.1177/089033440001600405
  42. Perez, P. F., Dore, J., Leclerc, M., Levenez, F., Benyacoub, J., Serrant, P., Segura-Roddero, I., Schiffrin, E. J. and Donnet-Hughes, A. 2007. Bacterial imprinting of the neonatal immune system: lessons from maternal cells. Pediatrics 119:e724-732. https://doi.org/10.1542/peds.2006-1649
  43. Ramsay, D. T., Kent, J. C., Owens, R. A. and Hartmann, P. E. 2004. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 113:361-367. https://doi.org/10.1542/peds.113.2.361
  44. Rescigno, M., Urbano, M., Valzasina, B., Francolin, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P. and Riddiardi-Castagnoli, P. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361-367. https://doi.org/10.1038/86373
  45. Rodriguez, J. M. 2014. The origin of human milk bacteria: is there a bacterial enteromammary pathway during late pregnancy and lactation? Adv. Nutr. 5:779-784. https://doi.org/10.3945/an.114.007229
  46. Thomsen, A. C., Espersen, T. and Maigaard, S. 1984. Course and treatment of milk stasis, noninfectious inflammation of the breast, and infectious mastitis in nursing women. Am. J. Obstet. Gynecol. 149:492-495. https://doi.org/10.1016/0002-9378(84)90022-X
  47. Thomsen, A. C., Hansen, K. B. and Moller, B. R. 1983. Leukocyte counts and microbiological cultivation in the diagnosis of puerperal mastitis. Am. J. Obstet. Gynecol. 146:938-941. https://doi.org/10.1016/0002-9378(83)90969-9
  48. Tusar, T., Zerdoner, K., Bogovic Matijasic B., Paveljsek, D., Benedik, E., Brantanic, B., Fidler, N. and Rogelj, I. 2014. Cultivable bacteria from milk from Slovenian breastfeeding mothers. Food Technol. Biotech. 52:242-247.
  49. Urbaniak, C., Angelini, M., Gloor, G. B. and Reid, G. 2016. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4:1. https://doi.org/10.1186/s40168-015-0145-y
  50. Van Niekerk, E., Autran, C. A., Nel, D. G., Kirsten, G. F., Blaauw, R. and Bode, L. 2014. Human milk oligosaccharides differ between HIV-infected and HIV uninfected mothers and are related to necrotizing enterocolitis incidence in their preterm very-low-birth-weight infants. J. Nutr. 144:1227-1233. https://doi.org/10.3945/jn.113.187799
  51. Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J., Falkow, S., Valdivia, R., Brown, W., Le, M., Berggren, R., Parks, W. T. and Fang, F. C. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804-808. https://doi.org/10.1038/44593
  52. Ward, T. L., Hosid, S., Ioshikhes, I. and Altosaar, I. 2013. Human milk metagenome: a functional capacity analysis. BMC Microbiol. 13:116. https://doi.org/10.1186/1471-2180-13-116
  53. Williams, J. E., Carrothers, J. M., Lackey, K. A., Beatty, N. F., York, M. A., Brooker, S. L., Shafii, B., Price, W. J., Settles, M. L., McGuire, M. A. and McGuire, M. K. 2017. Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J. Nutr. 147:1739-1748. https://doi.org/10.3945/jn.117.248864
  54. Xuan, C., Shamonki, J. M., Chung, A., Dinome, M. L., Chung, M., Sieling, P. A. and Lee, D. J. 2014. Microbial dysbiosis is associated with human breast cancer. PLoS ONE 9:e83744. https://doi.org/10.1371/journal.pone.0083744
  55. Yang, F., Zeng, X., Ning, K., Liu, K. L., Lo, C. C., Wang, W., Chen, J., Wang, D., Huang, R., Chang, X., Chain, P. S., Xie, G., Ling, J. and Xu, J. 2012. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J. 6:1-10. https://doi.org/10.1038/ismej.2011.71