DOI QR코드

DOI QR Code

Electrochemical Properties of a Zirconia Membrane with a Lanthanum Manganate-Zirconia Composite Electrode and its Oxygen Permeation Characteristics by Applied Currents

  • Park, Ji Young (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Jung, Noh Hyun (Kceracell) ;
  • Jung, Doh Won (Material Research Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Ahn, Sung-Jin (Material Research Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Park, Hee Jung (Department of Materials Science and Engineering, Dankook University)
  • Received : 2019.03.02
  • Accepted : 2019.03.12
  • Published : 2019.03.31

Abstract

An electrochemical oxygen permeating membrane (OPM) is fabricated using Zr0.895Sc0.095Ce0.005Gd0.005O2-δ (ScCeGdZ) as the solid electrolyte and aLa0.7Sr0.3MnO3-bScCeGdZ composite (LZab, electrode) as the electrode. The crystal phase of the electrode and the microstructure of the membrane is investigated with X-ray diffraction and scanning electron microscopy. The electrochemical resistance of the membrane is examined using 2-p ac impedance spectroscopy, and LZ55 shows the lowest electrode resistance among LZ82, LZ55 and LZ37. The oxygen permeation is studied with an oxygen permeation cell with a zirconia oxygen sensor. The oxygen flux of the OPM with LZ55 is nearly consistent with the theoretical value calculated from Faraday's Law below a critical current. However, it becomes saturated above the critical current due to the limit of the oxygen ionic conduction of the OPM. The OPM with LZ55 has a very high oxygen permeation flux of ~ 3.5 × 10-6 mol/㎠s in I = 1.4 A/㎠.

Keywords

References

  1. P. J. Gellings and H. Bouwmeester, The CRC Handbook of Solid State Electrochemistry; pp. 428-59, CRC Press, 1997.
  2. H. J. Park and G. M. Choi, "The Effect of Surface Coating on the Oxygen Permeation Characteristics of Zirconia," J. Eur. Ceram. Soc., 25 [12] 2577-81 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.105
  3. H. J. Park, J. K. Yang, Y. H. Jin, and K. H. Lee, "The Oxygen-Permeation Property of Doped-Zirconia Membrane at High Temperature and in Reduced Condition," Int. J. Hydrogen Energy, 43 [14] 293-300 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.015
  4. H. J. Park and G. M. Choi, "Oxygen Exchange and Transport Properties of Yttria-Stabilized Zirconia Coated with $LaCrO_3$," J. Electroceram., 17 781-86 (2006). https://doi.org/10.1007/s10832-006-6361-x
  5. M. Salehi, F. Clemens, E. M. Pfaff, S. Diethelm, C. Leach, T. Graule, and B. Grobety, "A Case Study of the Effect of Grain Size on the Oxygen Permeation Flux of BSCF Disk- Shaped Membrane Fabricated by Thermoplastic Processing," J. Membrane Sci., 382 [2-4] 186-93 (2011). https://doi.org/10.1016/j.memsci.2011.08.007
  6. S. Li, W. Jin, N. Xu, and J. Shi, "Synthesis and Oxygen Permeation Properties of $La_{0.2}Sr_{0.8}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Membranes," Solid State Ionics, 124 [1-2] 161-70 (1999). https://doi.org/10.1016/S0167-2738(99)00136-8
  7. J. Kim and Y. S. Lin, "Synthesis and Oxygen Permeation Properties of Ceramic-Metal Dual-Phase Membranes," J. Membrane Sci., 167 [1] 123-33 (2000). https://doi.org/10.1016/S0376-7388(99)00273-2
  8. A. Krishnan, X. G. Lu, and U. B. Pal, "Solid Oxide Membrane (SOM) Technology for Environmentally Sound Production of Tantalum Metal and Alloys from their Oxide Sources," Scand. J. Metall., 34 [6] 293-301 (2005). https://doi.org/10.1111/j.1600-0692.2005.00749.x
  9. K. Zhang, B. Meng, X. Tan, L. Liu, S. Wang, and S. Liu, "$CO_2$-Tolerant Ceramic Membrane Driven by Electrical Current for Oxygen Production at Intermediate Temperatures," J. Am. Ceram. Soc., 97 [1] 120-26 (2014). https://doi.org/10.1111/jace.12690
  10. J. Milshtein, E. Gratz, S. Pati, A. C. Powell, and U. Pal, "Yttria-Stabilized Zirconia Membrane Stability in Molten Fluoride Fluxes for Low-Carbon Magnesium Production by the SOM Process," J. Min. Metall., Sect. B, 49 [2] 183-90 (2013). https://doi.org/10.2298/JMMB120809005M
  11. R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, "Oxygen Sensors: Materials, Methods, Designs, and Applications," J. Mater. Sci., 38 [21] 4271-82 (2003). https://doi.org/10.1023/A:1026370729205
  12. H. J. Park and J. Y. Park, "A Promising High Performance Lanthanum Ferrite-based Composite Cathode for Intermediate Temperature Solid Oxide Fuel Cells (SOFCs)," Solid State Ionics, 244 30-4 (2013). https://doi.org/10.1016/j.ssi.2013.04.026
  13. F. Tietz, V. A. C. Haanappel, A. Mai, J. Mertens, and D. Stover, "Performance of LSCF Cathodes in Cell Tests," J. Power Sources, 156 [1] 20-2 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.015
  14. C. Kwak, D. W. Jung, D. H. Yeon, J. S. Kim, H. J. Park, S. J. Ahn, S. Y. Seo, and S. M. Lee, "Stabilization of High-Cobalt-Content Perovskites for Use as Cathodes in Solid Oxide Fuel Cells," RSC Adv., 3 [27] 10669-72 (2013). https://doi.org/10.1039/c3ra41145a
  15. H. J. Park and G. M. Choi, "Oxygen Permeation Characteristics of Zirconia with Surface Modification," Solid State Ionics, 177 [26-32] 2261-67 (2006). https://doi.org/10.1016/j.ssi.2006.05.048
  16. H. J. Park, C. Kwak, J. S. Kim, and S. J. Ahn, "Electrochemical Properties of Pure $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ and $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$-based Composite Cathodes for an Intermediate Temperature Solid Oxide Fuel Cell with Scdoped Zirconia Solid Electrolyte," J. Power Sources, 213 31-9 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.093
  17. C. Haering, A. Roosen, H. Schichl, and M. Schnoller, "Degradation of the Electrical Conductivity in Stabilised Zirconia System: Part II: Scandia-Stabilised Zirconia," Solid State Ionics, 176 [3-4] 261-68 (2005). https://doi.org/10.1016/j.ssi.2004.07.039
  18. H. J. Park and S. Kim, "Electrochemical Characteristics of ZnO-Nanowire/Yttria-Stabilized Zirconia Composite as a Cathode for Solid Oxide Fuel Cells," Electrochem. Solid-State Lett., 10 [11] B187-90 (2007). https://doi.org/10.1149/1.2771068
  19. D. W. Jung, C. Kwak, H. J. Park, J. S. Kim, S. J. Ahn, D. H. Yeon, S. Y. Seo, K. S. Moon, and S. M. Lee, "High-Performance Perovskite $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.1}Zn_{0.1}O_3$-$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Composite Cathode," Scr. Mater., 113 59-62 (2016). https://doi.org/10.1016/j.scriptamat.2015.09.042
  20. J. W. Fergus, "Electrolytes for Solid Oxide Fuel Cells," J. Power Sources, 162 30-40 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.062
  21. D. A. Agarkov, M. A. Borik, V. T. Bublik, S. I. Bredikhin, A. S. Chislov, A. V. Kulebyakin, I. E. Kuritsyna, E. E. Lomonov, F. O. Milovich, V. A. Myzina, V. V. Osiko, and N. Y. Tabachkova, "Structure and Transport Properties of Melt Grown $Sc_2O_3$ and $CeO_2$ Doped $ZrO_2$ Crystals," Solid State Ionics, 322 24-9 (2018). https://doi.org/10.1016/j.ssi.2018.04.024