References
- P. J. Gellings and H. Bouwmeester, The CRC Handbook of Solid State Electrochemistry; pp. 428-59, CRC Press, 1997.
- H. J. Park and G. M. Choi, "The Effect of Surface Coating on the Oxygen Permeation Characteristics of Zirconia," J. Eur. Ceram. Soc., 25 [12] 2577-81 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.105
- H. J. Park, J. K. Yang, Y. H. Jin, and K. H. Lee, "The Oxygen-Permeation Property of Doped-Zirconia Membrane at High Temperature and in Reduced Condition," Int. J. Hydrogen Energy, 43 [14] 293-300 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.015
-
H. J. Park and G. M. Choi, "Oxygen Exchange and Transport Properties of Yttria-Stabilized Zirconia Coated with
$LaCrO_3$ ," J. Electroceram., 17 781-86 (2006). https://doi.org/10.1007/s10832-006-6361-x - M. Salehi, F. Clemens, E. M. Pfaff, S. Diethelm, C. Leach, T. Graule, and B. Grobety, "A Case Study of the Effect of Grain Size on the Oxygen Permeation Flux of BSCF Disk- Shaped Membrane Fabricated by Thermoplastic Processing," J. Membrane Sci., 382 [2-4] 186-93 (2011). https://doi.org/10.1016/j.memsci.2011.08.007
-
S. Li, W. Jin, N. Xu, and J. Shi, "Synthesis and Oxygen Permeation Properties of
$La_{0.2}Sr_{0.8}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Membranes," Solid State Ionics, 124 [1-2] 161-70 (1999). https://doi.org/10.1016/S0167-2738(99)00136-8 - J. Kim and Y. S. Lin, "Synthesis and Oxygen Permeation Properties of Ceramic-Metal Dual-Phase Membranes," J. Membrane Sci., 167 [1] 123-33 (2000). https://doi.org/10.1016/S0376-7388(99)00273-2
- A. Krishnan, X. G. Lu, and U. B. Pal, "Solid Oxide Membrane (SOM) Technology for Environmentally Sound Production of Tantalum Metal and Alloys from their Oxide Sources," Scand. J. Metall., 34 [6] 293-301 (2005). https://doi.org/10.1111/j.1600-0692.2005.00749.x
-
K. Zhang, B. Meng, X. Tan, L. Liu, S. Wang, and S. Liu, "
$CO_2$ -Tolerant Ceramic Membrane Driven by Electrical Current for Oxygen Production at Intermediate Temperatures," J. Am. Ceram. Soc., 97 [1] 120-26 (2014). https://doi.org/10.1111/jace.12690 - J. Milshtein, E. Gratz, S. Pati, A. C. Powell, and U. Pal, "Yttria-Stabilized Zirconia Membrane Stability in Molten Fluoride Fluxes for Low-Carbon Magnesium Production by the SOM Process," J. Min. Metall., Sect. B, 49 [2] 183-90 (2013). https://doi.org/10.2298/JMMB120809005M
- R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, "Oxygen Sensors: Materials, Methods, Designs, and Applications," J. Mater. Sci., 38 [21] 4271-82 (2003). https://doi.org/10.1023/A:1026370729205
- H. J. Park and J. Y. Park, "A Promising High Performance Lanthanum Ferrite-based Composite Cathode for Intermediate Temperature Solid Oxide Fuel Cells (SOFCs)," Solid State Ionics, 244 30-4 (2013). https://doi.org/10.1016/j.ssi.2013.04.026
- F. Tietz, V. A. C. Haanappel, A. Mai, J. Mertens, and D. Stover, "Performance of LSCF Cathodes in Cell Tests," J. Power Sources, 156 [1] 20-2 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.015
- C. Kwak, D. W. Jung, D. H. Yeon, J. S. Kim, H. J. Park, S. J. Ahn, S. Y. Seo, and S. M. Lee, "Stabilization of High-Cobalt-Content Perovskites for Use as Cathodes in Solid Oxide Fuel Cells," RSC Adv., 3 [27] 10669-72 (2013). https://doi.org/10.1039/c3ra41145a
- H. J. Park and G. M. Choi, "Oxygen Permeation Characteristics of Zirconia with Surface Modification," Solid State Ionics, 177 [26-32] 2261-67 (2006). https://doi.org/10.1016/j.ssi.2006.05.048
-
H. J. Park, C. Kwak, J. S. Kim, and S. J. Ahn, "Electrochemical Properties of Pure
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ and$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ -based Composite Cathodes for an Intermediate Temperature Solid Oxide Fuel Cell with Scdoped Zirconia Solid Electrolyte," J. Power Sources, 213 31-9 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.093 - C. Haering, A. Roosen, H. Schichl, and M. Schnoller, "Degradation of the Electrical Conductivity in Stabilised Zirconia System: Part II: Scandia-Stabilised Zirconia," Solid State Ionics, 176 [3-4] 261-68 (2005). https://doi.org/10.1016/j.ssi.2004.07.039
- H. J. Park and S. Kim, "Electrochemical Characteristics of ZnO-Nanowire/Yttria-Stabilized Zirconia Composite as a Cathode for Solid Oxide Fuel Cells," Electrochem. Solid-State Lett., 10 [11] B187-90 (2007). https://doi.org/10.1149/1.2771068
-
D. W. Jung, C. Kwak, H. J. Park, J. S. Kim, S. J. Ahn, D. H. Yeon, S. Y. Seo, K. S. Moon, and S. M. Lee, "High-Performance Perovskite
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.1}Zn_{0.1}O_3$ -$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Composite Cathode," Scr. Mater., 113 59-62 (2016). https://doi.org/10.1016/j.scriptamat.2015.09.042 - J. W. Fergus, "Electrolytes for Solid Oxide Fuel Cells," J. Power Sources, 162 30-40 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.062
-
D. A. Agarkov, M. A. Borik, V. T. Bublik, S. I. Bredikhin, A. S. Chislov, A. V. Kulebyakin, I. E. Kuritsyna, E. E. Lomonov, F. O. Milovich, V. A. Myzina, V. V. Osiko, and N. Y. Tabachkova, "Structure and Transport Properties of Melt Grown
$Sc_2O_3$ and$CeO_2$ Doped$ZrO_2$ Crystals," Solid State Ionics, 322 24-9 (2018). https://doi.org/10.1016/j.ssi.2018.04.024