References
- L. Blum, W. A. Meulenberg, H. Nabielek, and R. Steinberger- Wilckens, "Worldwide SOFC Technology Overview and Benchmark," Int. J. Appl. Ceram. Technol., 2 [6] 482-92 (2005). https://doi.org/10.1111/j.1744-7402.2005.02049.x
-
H.-Y. Jeong, K. J. Yoon, J.-H. Lee, Y.-C. Chung, and J. Hong, "Long-Term Stability for Co-Electrolysis of
$CO_2$ /Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells," J. Korean Ceram. Soc., 55 [1] 50-4 (2018). https://doi.org/10.4191/kcers.2018.55.1.09 - K. Nakamura, T. Ide, S. Taku, T. Nakajima, M. Shirai, T. Dohkoh, T. Kume, Y. Ikeda, T. Somekawa, T. Kushi, K. Ogasawara, and K. Fujita, "Development of a Highly Efficient SOFC Module Using Two-Stage Stacks and a Fuel Regeneration Process," Fuel Cells, 17 [4] 413-580 (2017). https://doi.org/10.1002/fuce.201770041
- J. H. Yi and T. S. Kim, "Effects of Fuel Utilization on Performance of SOFC/Gas Turbine Combined Power Generation Systems," J. Mech. Sci. Technol., 31 [6] 3091-100 (2017). https://doi.org/10.1007/s12206-017-0553-y
-
H. An, D. Shin, and H.-I. Ji, "
$Pr_2NiO_{4+{\delta}}$ for Cathode in Protonic Ceramic Fuel Cells," J. Korean Ceram. Soc., 55 [4] 358-63 (2018). https://doi.org/10.4191/kcers.2018.55.4.06 -
B. Philippeau, F. Mauvy, C. Mazataud, S. Fourcade, and J. Grenier, "Comparative Study of Electrochemical Properties of Mixed Conducting
$Ln_2NiO_{4+{\delta}}$ (Ln = La, Pr and Nd) and$La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3-{\delta}}$ as SOFC Cathodes Associated to$Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ ,$La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}}$ and$La_9Sr_1Si_6O_{26.5}$ Electrolytes," Solid State Ionics, 249 17-25 (2013). https://doi.org/10.1016/j.ssi.2013.06.009 - C. Sun, R. Hui, and J. Roller, "Cathode Materials for Solid Oxide Fuel Cells: A Review," J. Solid State Electrochem., 14 [7] 1125-44 (2010). https://doi.org/10.1007/s10008-009-0932-0
- A. A. Samat, M. R. Somalu, A. Muchtar, O. H. Hassan, and N. Osman, "LSC Cathode Prepared by Polymeric Complexation Method for Proton-Conducting SOFC Application," J. Sol-Gel Sci. Technol., 78 [2] 382-93 (2016). https://doi.org/10.1007/s10971-015-3945-4
- Celikbilek, E. Siebert, D. Jauffrès, C. L. Martin, and E. Djurado, "Influence of Sintering Temperature on Morphology and Electrochemical Performance of LSCF/GDC Composite Films as Efficient Cathode for SOFC," Electrochim. Acta, 246 1248-58 (2017). https://doi.org/10.1016/j.electacta.2017.06.070
- D. Heidari, S. Javadpour, and S. H. Chan, "Optimization of BSCF-SDC Composite Air Electrode for Intermediate Temperature Solid Oxide Electrolyzer Cell," Energy Convers. Manage., 136 78-84 (2017). https://doi.org/10.1016/j.enconman.2017.01.007
-
L. Dieterle, D. Bach, R. Schneider, H. Stormer, D. Gerthsen, U. Guntow, E. Ivers-Tiffee, A. Weber, C. Peters, and H. Yokokawa, "Structural and Chemical Properties of Nanocrystalline
$La_{0.5}Sr_{0.5}CoO_{3-{\delta}}$ Layers on Yttria-Stabilized Zirconia Analyzed by Transmission Electron Microscopy," J. Mater. Sci., 43 [9] 3135-43 (2008). https://doi.org/10.1007/s10853-008-2502-8 - J. C. W. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, "Metallic Interconnects for Solid Oxide Fuel Cell," Int. J. Hydrogen Energy, 42 [14] 9219-29 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.195
- J. W. Fergus, "Metallic Interconnects for Solid Oxide Fuel Cells," Mater. Sci. Eng. A, 397 [1-2] 271-83 (2005). https://doi.org/10.1016/j.msea.2005.02.047
- S. Geng, Q. Zhao, Y. Li, J. Mu, G. Chen, F. Wang, and S. Zhu, "Sputtered MnCu Metallic Coating on Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnects Application," Int. J. Hydrogen Energy, 42 [15] 10298-307 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.178
- J. W. Fergus, "Effect of Cathode and Electrolyte Transport Properties on Chromium Poisoning in Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 32 [16] 3664-71 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.005
-
L. Zhao, S. Amarasinghe, and S. P. Jiang, "Enhanced Chromium Tolerance of
$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O-{3-{\delta}}$ Electrode of Solid Oxide Fuel Cells by$Gd_{0.1}CeO_{1.95}$ Impregnations," Electrochem. Commun., 37 84-7 (2013). https://doi.org/10.1016/j.elecom.2013.10.019 -
R. Wang, Z. Sun, U. B. Pal, S. Gopalan, and S. N. Basu, "Mitigation of Chromium Poisoning of Cathodes in Solid Oxide Fuel Cells Employing
$CuMn_{1.8}O_4$ Spinel Coating on Metallic Interconnect," J. Power Sources, 376 100-10 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.069 -
Z. Ding, R. Guo, W. Guo, Z. Liu, G. Cai, and H. Jiang, "Preparation and Electrochemical Properties of Sr-Doped
$K_2NiF_4$ -Type Cathode Material$Pr_{1.7}Sr_{0.3}CuO_4$ for ITSOFCs," Fuel Cells, 16 [2] 252-57 (2016). https://doi.org/10.1002/fuce.201500140 -
N. Wu, W. Wang, Y. Zhong, G. Yang, J. Qu, and Z. Shao, "Nickel-Iron Alloy Nanoparticle-Decorated
$K_2NiF_4$ -Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells," ChemElectroChem, 4 [9] 2378-87 (2017). https://doi.org/10.1002/celc.201700211 -
E. Kravchenko, K. Zakharchuk, A. Viskup, J. Grins, G. Svensson, V. Pankov, and A. Yaremchenko, "Impact of Oxygen Deficiency on the Electrochemical Performance of
$K_2NiF_4-Type (La_{1-x}Sr_x)_2NiO_{4-{\delta}}$ Oxygen Electrodes," Chem-SusChem, 10 [3] 600-11 (2017). -
E. Boehm, J. Bassat, P. Dordor, F. Mauvy, J. Grenier, and Ph. Stevens, "Oxygen Diffusion and Transport Properties in Non-Stoichiometric
$Ln_{2-x}NiO_{4+{\delta}}$ Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005). https://doi.org/10.1016/j.ssi.2005.06.033 - H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M. E. Brito, and H. Kishimoto, "Thermodynamic and Kinetic Considerations on Degradations in Solid Oxide Fuel Cell Cathodes," J. Alloys Compounds, 452 [1] 41-7 (2008). https://doi.org/10.1016/j.jallcom.2006.12.150
-
M. Yang, E. Bucher, and W. Sitte, "Effects of Chromium Poisoning on the Long-Term Oxygen Exchange Kinetics of the Solid Oxide Fuel Cell Cathode Materials
$La_{0.6}Sr_{0.4}CoO_3$ and$Nd_2NiO_4$ ," J. Power Sources, 196 [17] 7313-17 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.064 - E. Park, S. Taniguchi, T. Daio, J. Chou, and K. Sasaki, "Comparison of Chromium Poisoning among Solid Oxide Fuel Cell Cathode Materials," Solid State Ionics, 262 421-27 (2014). https://doi.org/10.1016/j.ssi.2014.01.047
- J. A. Schuler, H. Lbbe, and A. H.-Wyser, "Nd-Nickelate Solid Oxide Fuel Cell Cathode Sensitivity to Cr and Si Contamination," J. Power Sources, 213 223-28 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.112
-
Y. Toyosumi, H. Ishikawa, and K. Ishikawa, "Structural Phase Transition of
$Nd_2NiO_{4+{\delta}}$ (0.106$\leq$ ${\delta}$ $\leq$ 0.224)," J. Alloys Compounds, 408-412 1200-4 (2006). https://doi.org/10.1016/j.jallcom.2004.12.201 - J. Nielsen and J. Hjelm, "Impedance of SOFC Electrodes: A Review and a Comprehensive Case Study on the Impedance of LSM:YSZ Cathodes," Electrochim. Acta, 115 31-45 (2014). https://doi.org/10.1016/j.electacta.2013.10.053
- N. Hildenbrand, B. A. Boukamp, P. Nammensma, and D. H. A. Blank, "Improved Cathode/Electrolyte Interface of SOFC," Solid State Ionics, 192 [1] 12-5 (2011). https://doi.org/10.1016/j.ssi.2010.01.028
- P. Aguiar, C. S. Adjiman, and N. P. Brandon, "Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance," J. Power Sources, 138 [1-2] 120-36 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.040
-
F. Mauvy, C. Lalanne, J. Bassat, J. Grenier, H. Zhao, L. Huo, and P. Stevens, "Electrode Properties of
$Ln_2NiO_{4+{\delta}}$ (Ln=La,Nd,Pr) AC Impedance and DC Polarization Studies," J. Electrochem. Soc., 153 A1547-53 (2006). https://doi.org/10.1149/1.2207059 - I. B. Sharma and D. Singh, "Solid State Chemistry of Ruddlesden-Popper Type Complex Oxides," Bull. Mater. Sci., 21 [5] 363-74 (1998). https://doi.org/10.1007/BF02744920
-
J. Rodriguez-Carvajal, M. T. Fernandez-Diaz, J. L. Martinez, F. Fernandez, and R. Saez-Puche, "Structural Phase Transitions and Three-Dimensional Magnetic Ordering in the
$Nd_2NiO_4$ Oxide," Europhys. Lett., 11 [3] 261-8 (1990). https://doi.org/10.1209/0295-5075/11/3/013 -
K. Ishikawa, K. Metoki, and H. Miyamoto, "Orthorhombic-Orthorhombic Phase Transitions in
$Nd_2NiO_{4+{\delta}}$ (0.067$\leq$ ${\delta}$ $\leq$ 0.224)," J. Solid State Chem., 182 [8] 2096-103 (2009). https://doi.org/10.1016/j.jssc.2009.05.025
Cited by
- Improved Tolerance of Lanthanum Nickelate (La2NiO4+δ) Cathodes to Chromium Poisoning Under Current Load in Solid Oxide Fuel Cells vol.71, pp.11, 2019, https://doi.org/10.1007/s11837-019-03724-0
- Long-Term Stability of Pr2NiO4+δ Air Electrodes for Solid Oxide Cells against Chromium Poisoning vol.168, pp.1, 2019, https://doi.org/10.1149/1945-7111/abdc5e
- Understanding redox cycling behavior of Ni-YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis vol.58, pp.5, 2021, https://doi.org/10.1007/s43207-021-00136-2