DOI QR코드

DOI QR Code

Chromium Poisoning of Neodymium Nickelate (Nd2NiO4) Cathodes for Solid Oxide Fuel Cells

  • Lee, Kyoung Jin (Department Material Science and Engineering, Inha University) ;
  • Chung, Jae Hun (Department Material Science and Engineering, Inha University) ;
  • Lee, Min Jin (Department Material Science and Engineering, Inha University) ;
  • Hwang, Hae Jin (Department Material Science and Engineering, Inha University)
  • Received : 2019.01.14
  • Accepted : 2019.02.25
  • Published : 2019.03.31

Abstract

In this study, we investigated the long-term stability of Nd2NiO4 solid oxide fuel cell (SOFC) cathodes to evaluate their chromium poisoning tolerance. Symmetrical cells consisting of Nd2NiO4 electrodes and a yttria-stabilized zirconia electrolyte were fabricated and the cell potential and polarization resistance were measured at 850 ℃ in the presence of gaseous chromium species for 800 h. Up to 500 h of operation, the cell potential remained constant at 500 mA/㎠. However, it increased slightly over the operation duration of 550-800 h. No appreciable increase was observed in the polarization resistance of the Nd2NiO4 cathode during the entire operation of 800 h. Physicochemical examinations revealed that the gaseous chromium species did not form chromium-related contamination not only in the Nd2NiO4 cathode but also at the cathode/electrolyte interface. The results demonstrated that Nd2NiO4 is resistant to chromium poisoning, and hence is a potential alternative to standard perovskite cathodes.

Keywords

References

  1. L. Blum, W. A. Meulenberg, H. Nabielek, and R. Steinberger- Wilckens, "Worldwide SOFC Technology Overview and Benchmark," Int. J. Appl. Ceram. Technol., 2 [6] 482-92 (2005). https://doi.org/10.1111/j.1744-7402.2005.02049.x
  2. H.-Y. Jeong, K. J. Yoon, J.-H. Lee, Y.-C. Chung, and J. Hong, "Long-Term Stability for Co-Electrolysis of $CO_2$/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells," J. Korean Ceram. Soc., 55 [1] 50-4 (2018). https://doi.org/10.4191/kcers.2018.55.1.09
  3. K. Nakamura, T. Ide, S. Taku, T. Nakajima, M. Shirai, T. Dohkoh, T. Kume, Y. Ikeda, T. Somekawa, T. Kushi, K. Ogasawara, and K. Fujita, "Development of a Highly Efficient SOFC Module Using Two-Stage Stacks and a Fuel Regeneration Process," Fuel Cells, 17 [4] 413-580 (2017). https://doi.org/10.1002/fuce.201770041
  4. J. H. Yi and T. S. Kim, "Effects of Fuel Utilization on Performance of SOFC/Gas Turbine Combined Power Generation Systems," J. Mech. Sci. Technol., 31 [6] 3091-100 (2017). https://doi.org/10.1007/s12206-017-0553-y
  5. H. An, D. Shin, and H.-I. Ji, "$Pr_2NiO_{4+{\delta}}$ for Cathode in Protonic Ceramic Fuel Cells," J. Korean Ceram. Soc., 55 [4] 358-63 (2018). https://doi.org/10.4191/kcers.2018.55.4.06
  6. B. Philippeau, F. Mauvy, C. Mazataud, S. Fourcade, and J. Grenier, "Comparative Study of Electrochemical Properties of Mixed Conducting $Ln_2NiO_{4+{\delta}}$ (Ln = La, Pr and Nd) and $La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3-{\delta}}$ as SOFC Cathodes Associated to $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$, $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}}$ and $La_9Sr_1Si_6O_{26.5}$ Electrolytes," Solid State Ionics, 249 17-25 (2013). https://doi.org/10.1016/j.ssi.2013.06.009
  7. C. Sun, R. Hui, and J. Roller, "Cathode Materials for Solid Oxide Fuel Cells: A Review," J. Solid State Electrochem., 14 [7] 1125-44 (2010). https://doi.org/10.1007/s10008-009-0932-0
  8. A. A. Samat, M. R. Somalu, A. Muchtar, O. H. Hassan, and N. Osman, "LSC Cathode Prepared by Polymeric Complexation Method for Proton-Conducting SOFC Application," J. Sol-Gel Sci. Technol., 78 [2] 382-93 (2016). https://doi.org/10.1007/s10971-015-3945-4
  9. Celikbilek, E. Siebert, D. Jauffrès, C. L. Martin, and E. Djurado, "Influence of Sintering Temperature on Morphology and Electrochemical Performance of LSCF/GDC Composite Films as Efficient Cathode for SOFC," Electrochim. Acta, 246 1248-58 (2017). https://doi.org/10.1016/j.electacta.2017.06.070
  10. D. Heidari, S. Javadpour, and S. H. Chan, "Optimization of BSCF-SDC Composite Air Electrode for Intermediate Temperature Solid Oxide Electrolyzer Cell," Energy Convers. Manage., 136 78-84 (2017). https://doi.org/10.1016/j.enconman.2017.01.007
  11. L. Dieterle, D. Bach, R. Schneider, H. Stormer, D. Gerthsen, U. Guntow, E. Ivers-Tiffee, A. Weber, C. Peters, and H. Yokokawa, "Structural and Chemical Properties of Nanocrystalline $La_{0.5}Sr_{0.5}CoO_{3-{\delta}}$ Layers on Yttria-Stabilized Zirconia Analyzed by Transmission Electron Microscopy," J. Mater. Sci., 43 [9] 3135-43 (2008). https://doi.org/10.1007/s10853-008-2502-8
  12. J. C. W. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, "Metallic Interconnects for Solid Oxide Fuel Cell," Int. J. Hydrogen Energy, 42 [14] 9219-29 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.195
  13. J. W. Fergus, "Metallic Interconnects for Solid Oxide Fuel Cells," Mater. Sci. Eng. A, 397 [1-2] 271-83 (2005). https://doi.org/10.1016/j.msea.2005.02.047
  14. S. Geng, Q. Zhao, Y. Li, J. Mu, G. Chen, F. Wang, and S. Zhu, "Sputtered MnCu Metallic Coating on Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnects Application," Int. J. Hydrogen Energy, 42 [15] 10298-307 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.178
  15. J. W. Fergus, "Effect of Cathode and Electrolyte Transport Properties on Chromium Poisoning in Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 32 [16] 3664-71 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.005
  16. L. Zhao, S. Amarasinghe, and S. P. Jiang, "Enhanced Chromium Tolerance of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O-{3-{\delta}}$ Electrode of Solid Oxide Fuel Cells by $Gd_{0.1}CeO_{1.95}$ Impregnations," Electrochem. Commun., 37 84-7 (2013). https://doi.org/10.1016/j.elecom.2013.10.019
  17. R. Wang, Z. Sun, U. B. Pal, S. Gopalan, and S. N. Basu, "Mitigation of Chromium Poisoning of Cathodes in Solid Oxide Fuel Cells Employing $CuMn_{1.8}O_4$ Spinel Coating on Metallic Interconnect," J. Power Sources, 376 100-10 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.069
  18. Z. Ding, R. Guo, W. Guo, Z. Liu, G. Cai, and H. Jiang, "Preparation and Electrochemical Properties of Sr-Doped $K_2NiF_4$-Type Cathode Material $Pr_{1.7}Sr_{0.3}CuO_4$ for ITSOFCs," Fuel Cells, 16 [2] 252-57 (2016). https://doi.org/10.1002/fuce.201500140
  19. N. Wu, W. Wang, Y. Zhong, G. Yang, J. Qu, and Z. Shao, "Nickel-Iron Alloy Nanoparticle-Decorated $K_2NiF_4$-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells," ChemElectroChem, 4 [9] 2378-87 (2017). https://doi.org/10.1002/celc.201700211
  20. E. Kravchenko, K. Zakharchuk, A. Viskup, J. Grins, G. Svensson, V. Pankov, and A. Yaremchenko, "Impact of Oxygen Deficiency on the Electrochemical Performance of $K_2NiF_4-Type (La_{1-x}Sr_x)_2NiO_{4-{\delta}}$ Oxygen Electrodes," Chem-SusChem, 10 [3] 600-11 (2017).
  21. E. Boehm, J. Bassat, P. Dordor, F. Mauvy, J. Grenier, and Ph. Stevens, "Oxygen Diffusion and Transport Properties in Non-Stoichiometric $Ln_{2-x}NiO_{4+{\delta}}$ Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005). https://doi.org/10.1016/j.ssi.2005.06.033
  22. H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M. E. Brito, and H. Kishimoto, "Thermodynamic and Kinetic Considerations on Degradations in Solid Oxide Fuel Cell Cathodes," J. Alloys Compounds, 452 [1] 41-7 (2008). https://doi.org/10.1016/j.jallcom.2006.12.150
  23. M. Yang, E. Bucher, and W. Sitte, "Effects of Chromium Poisoning on the Long-Term Oxygen Exchange Kinetics of the Solid Oxide Fuel Cell Cathode Materials $La_{0.6}Sr_{0.4}CoO_3$ and $Nd_2NiO_4$," J. Power Sources, 196 [17] 7313-17 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.064
  24. E. Park, S. Taniguchi, T. Daio, J. Chou, and K. Sasaki, "Comparison of Chromium Poisoning among Solid Oxide Fuel Cell Cathode Materials," Solid State Ionics, 262 421-27 (2014). https://doi.org/10.1016/j.ssi.2014.01.047
  25. J. A. Schuler, H. Lbbe, and A. H.-Wyser, "Nd-Nickelate Solid Oxide Fuel Cell Cathode Sensitivity to Cr and Si Contamination," J. Power Sources, 213 223-28 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.112
  26. Y. Toyosumi, H. Ishikawa, and K. Ishikawa, "Structural Phase Transition of $Nd_2NiO_{4+{\delta}}$ (0.106 $\leq$ ${\delta}$ $\leq$ 0.224)," J. Alloys Compounds, 408-412 1200-4 (2006). https://doi.org/10.1016/j.jallcom.2004.12.201
  27. J. Nielsen and J. Hjelm, "Impedance of SOFC Electrodes: A Review and a Comprehensive Case Study on the Impedance of LSM:YSZ Cathodes," Electrochim. Acta, 115 31-45 (2014). https://doi.org/10.1016/j.electacta.2013.10.053
  28. N. Hildenbrand, B. A. Boukamp, P. Nammensma, and D. H. A. Blank, "Improved Cathode/Electrolyte Interface of SOFC," Solid State Ionics, 192 [1] 12-5 (2011). https://doi.org/10.1016/j.ssi.2010.01.028
  29. P. Aguiar, C. S. Adjiman, and N. P. Brandon, "Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance," J. Power Sources, 138 [1-2] 120-36 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.040
  30. F. Mauvy, C. Lalanne, J. Bassat, J. Grenier, H. Zhao, L. Huo, and P. Stevens, "Electrode Properties of $Ln_2NiO_{4+{\delta}}$ (Ln=La,Nd,Pr) AC Impedance and DC Polarization Studies," J. Electrochem. Soc., 153 A1547-53 (2006). https://doi.org/10.1149/1.2207059
  31. I. B. Sharma and D. Singh, "Solid State Chemistry of Ruddlesden-Popper Type Complex Oxides," Bull. Mater. Sci., 21 [5] 363-74 (1998). https://doi.org/10.1007/BF02744920
  32. J. Rodriguez-Carvajal, M. T. Fernandez-Diaz, J. L. Martinez, F. Fernandez, and R. Saez-Puche, "Structural Phase Transitions and Three-Dimensional Magnetic Ordering in the $Nd_2NiO_4$ Oxide," Europhys. Lett., 11 [3] 261-8 (1990). https://doi.org/10.1209/0295-5075/11/3/013
  33. K. Ishikawa, K. Metoki, and H. Miyamoto, "Orthorhombic-Orthorhombic Phase Transitions in $Nd_2NiO_{4+{\delta}}$ (0.067 $\leq$ ${\delta}$ $\leq$ 0.224)," J. Solid State Chem., 182 [8] 2096-103 (2009). https://doi.org/10.1016/j.jssc.2009.05.025

Cited by

  1. Improved Tolerance of Lanthanum Nickelate (La2NiO4+δ) Cathodes to Chromium Poisoning Under Current Load in Solid Oxide Fuel Cells vol.71, pp.11, 2019, https://doi.org/10.1007/s11837-019-03724-0
  2. Long-Term Stability of Pr2NiO4+δ Air Electrodes for Solid Oxide Cells against Chromium Poisoning vol.168, pp.1, 2019, https://doi.org/10.1149/1945-7111/abdc5e
  3. Understanding redox cycling behavior of Ni-YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis vol.58, pp.5, 2021, https://doi.org/10.1007/s43207-021-00136-2