References
- M. Scheffler, and P. Colombo, Cellular Ceramics: Structure, Manufacturing, Properties and Applications; Wiley-VCH, Weinheim, 2005.
- A. R. Stuart, U. T. Gonzenbach, and E. Tervoort, "Processing Routes to Macroporous Ceramics: A Review," J. Am. Ceram. Soc., 89 [6] 1771-89 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
- J. Banhart, "Manufacturing Routes for Metallic Foams," JOM, 52 [12] 22-7 (2000). https://doi.org/10.1007/s11837-000-0062-8
- N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Effect of Amphiphile Chain Length on Wet Foam Stability of Porous Ceramics," Ceram. Int., 41 [3] 4021-27 (2015). https://doi.org/10.1016/j.ceramint.2014.11.089
- J. Banhart, "Manufacture, Characterisation and Application of Cellular Metals and Metal Foams," Prog. Mater. Sci., 46 [6] 559-632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5
- W. Ramsden, "Separation of Solids in the Surface-Layers of Solutions and 'Suspensions'," Proc. R. Soc. London, 72 156-64 (1903). https://doi.org/10.1098/rspl.1903.0034
- I. Ya. Guzman, "Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review)," Glass Ceram., 60 [9] 280-83 (2003). https://doi.org/10.1023/b:glac.0000008227.85944.64
- P. Colombo and J. R. Hellmann, "Ceramic Foams from Preceramic Polymers," Mater. Res. Innovations, 6 [5] 260-72 (2002). https://doi.org/10.1007/s10019-002-0209-z
- H. M. Princen and A. D. Kiss, "Rheology of Foams and Highly Concentrated Emulsions: IV. An Experimental Study of the Shear Viscosity and Yield Stress of Concentrated Emulsions," J. Colloid Interface Sci., 128 [1] 176-87 (1989). https://doi.org/10.1016/0021-9797(89)90396-2
- W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics; 2nd Edition, Wiley, New York, 1976.
- P. Colombo, "Conventional and Novel Processing Methods for Cellular Ceramics," Philos. Trans. R. Soc., A, 364 [1838] 109-24 (2006). https://doi.org/10.1098/rsta.2005.1683
- B. Neirinck, J. Fransaer, O. V. der Biest, and J. Vleugels, "A Novel Route to Produce Porous Ceramics," J. Eur. Ceram. Soc., 29 [5] 833-36 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.009
- B. P. Binks, "Particles as Surfactants-Similarities and Differences," Curr. Opin. Colloid Interface Sci., 7 [1] 21-41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0
- M. D. M. Innocentini, P. Sepulveda, V. R. Salvini, V. C. Pandolfelli, and J. R. Coury, "Permeability and Structure of Cellular Ceramics: A Comparison between Two Preparation Techniques," J. Am. Ceram. Soc., 81 [12] 3349-52 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02782.x
- O. Lyckfeldt and J. M. F. Ferreira, "Processing of Porous Ceramics by 'Starch Consolidation'," J. Eur. Ceram. Soc., 18 [2] 131-40 (1998). https://doi.org/10.1016/S0955-2219(97)00101-5
- J. Saggio-Woyansky, C. E. Scott, and W. P. Minnear, "Processing of Porous Ceramics," Am. Ceram. Soc. Bull., 71 [11] 1674-82 (1992).
- H. R. Ramay and M. Zhang, "Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-Casting and Polymer Sponge Methods," Biomaterials, 24 [19] 3293-302 (2003). https://doi.org/10.1016/S0142-9612(03)00171-6
- C. Galassi, "Processing of Porous Ceramics: Piezoelectric Materials," J. Eur. Ceram. Soc., 26 [14] 2951-58 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.011
- F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, "Preparation of Porous Materials with Controlled Pore Size and Porosity," J. Eur. Ceram. Soc., 24 [2] 341-44 (2004) https://doi.org/10.1016/S0955-2219(03)00223-1
-
N. Sarkar, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Processing of Particle Stabilized
$Al_2TiO_5-ZrTiO_4$ Foam to Porous Ceramics," J. Eur. Ceram. Soc., 35 [14] 3969-76 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.07.004 - B. S. Murray, "Stabilization of Bubbles and Foams," Curr. Opin. Colloid Interface Sci., 12 [4] 232-41 (2007). https://doi.org/10.1016/j.cocis.2007.07.009
- T. S. Horozov, "Foams and Foam Films Stabilised by Solid Particles," Curr. Opin. Colloid Interface Sci., 13 [3] 134-40 (2008). https://doi.org/10.1016/j.cocis.2007.11.009
- P. C. Hidber, T. J. Graule, and L. J. Gauckler, "Influence of the Dispersant Structure on Properties of Electrostatically Stabilized Aqueous Alumina Suspensions," J. Eur. Ceram. Soc., 17 [2] 239-49 (1997). https://doi.org/10.1016/S0955-2219(96)00151-3
-
B. Basnet, N. Sarkar, J. G. Park, S. Mazumder, and I. J. Kim, "
$Al_2O_3-TiO_2/ZrO_2-SiO_2$ based Porous Ceramics from Particle-Stabilized Wet Foam," J. Adv. Ceram., 6 [2] 129-38 (2017). https://doi.org/10.1007/s40145-017-0225-5 - S. Bhaskar, J. G. Park, G. H. Cho, S. Y. Kim, and I. J. Kim, "Wet Foam Stability and Tailoring Microstructure of Porous Ceramics Using Polymer Beads," Adv. Appl. Ceram., 114 [6] 333-37 (2015). https://doi.org/10.1179/1743676115Y.0000000004
- L. J. Gauckler, M. M. Waeber, C. Conti, and M. Jacob-Duliere, "Ceramic Foam for Molten Filtration," JOM, 37 [9] 47-50 (1985). https://doi.org/10.1007/BF03258640
- Y. Shan, J. F. Yang, J. Q. Gao, W. H. Zhang, Z. H. Jin, R. Janssen, and T. Ohji, "Porous Silicon Nitride Ceramics Prepared by Reduction-Nitridation of Silica," J. Am. Ceram. Soc., 88 [9] 2594-96 (2005). https://doi.org/10.1111/j.1551-2916.2005.00444.x
- N. D. Denkov, I. B. Ivanov, P. A. Kralchevsky, and D. T. Wasan, "A Possible Mechanism of Stabilization of Emulsions by Solid Particles," J. Colloid Interface Sci., 150 [2] 589-93 (1992). https://doi.org/10.1016/0021-9797(92)90228-E
- L. J. Gauckler, Th. Graule, and F. Baader, "Ceramic Forming Using Enzyme Catalyzed Reactions," Mater. Chem. Phys., 61 [1] 78-102 (1999). https://doi.org/10.1016/S0254-0584(99)00117-0
-
S. Bhaskar, J. G. Park, M. J. Lee, T. Y. Lim, I. S. Han, and I. J. Kim, "
$ZrO_2-TiO_2$ Porous Ceramics from Particle Stabilized Wet Foam by Colloidal Processing," J. Ceram. Soc. Jpn., 124 [1] 106-10 (2016). https://doi.org/10.2109/jcersj2.15170 - I. Lesov, S. Tcholakova, and N. Denkov, "Factors Controlling the Formation and Stability of Foams Used as Precursors of Porous Materials," J. Colloid Interface Sci., 426 9-21 (2014). https://doi.org/10.1016/j.jcis.2014.03.067
- C. Hill and J. Eastoe, "Foams: From Nature to Industry," Adv. Colloid Interface Sci., 247 496-13 (2017). https://doi.org/10.1016/j.cis.2017.05.013
- A. B. Subramaniam, C. Mejean, M. Abkarian, and H. A. Stone, "Microstructure, Morphology and Lifetime of Armored Bubbles Exposed to Surfactants," Langmuir, 22 [14] 5986-90 (2006). https://doi.org/10.1021/la060388x
- U. T. Gonzenbach, A. R. Studart, D. Steinlin, E. Tervoort, and L. J. Gauckler, "Processing of Particle-Stabilized Wet Foams into Porous Ceramics," J. Am. Ceram. Soc., 90 [11] 3407-14 (2007). https://doi.org/10.1111/j.1551-2916.2007.01907.x
- U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Stabilization of Foams with Inorganic Colloidal Particles," Langmuir, 22 [26] 10983-88 (2006). https://doi.org/10.1021/la061825a
- T. N. Hunter, R. J. Pugh, G. V. Franks, and G. J. Jameson, "A Role of Particles in Stabilizing Foams and Emulsions," Adv. Colloid Interface Sci., 137 [2] 57-81 (2008). https://doi.org/10.1016/j.cis.2007.07.007
- U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Wet Foams," J. Am. Ceram. Soc., 90 [1] 16-22 (2007). https://doi.org/10.1111/j.1551-2916.2006.01328.x
- K. Kamitani, T. Hyodo, Y. Shimizu, and M. Egashira, "Fabrication of Highly Porous Alumina-based Ceramics with Connected Space by Employing PMMA Microspheres as a Template," Adv. Mater. Sci. Eng., 2009 601850 (2009).
- G. J. Zhang, J. F. Yang, and T. Ohji, "Fabrication of Porous Ceramics with Unidirectionally Aligned Continuous Pores," J. Am. Ceram. Soc., 84 [6] 1395-57 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00849.x
- F. K. Yang, C. Li, Y. Lin, and C. A. Wang, "Fabrication of Porous Mullite Ceramics with High Porosity Using Foam-Gelcasting," Key Eng. Mater., 512-515 580-85 (2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.580
-
W. Y. Jang, D. N. Seo, B. Basnet, J. G. Park, I. S. Han, and I. J. Kim, "Tailoring the Microstructure of
$Al_2O_3-SiO_2$ Porous Ceramics through Starch Consolidation by Direct Foaming," J. Ceram. Process. Res., 18 [4] 275-79 (2017). https://doi.org/10.36410/JCPR.2017.18.4.275 - P. Sepulveda and J. G. P. Binner, "Processing of Cellular Ceramics by Foaming and in situ Polymerisation of Organic Monomers," J. Eur. Ceram. Soc., 19 [12] 2059-66 (1999). https://doi.org/10.1016/S0955-2219(99)00024-2
- S. Li, C. A. Wang, and J. Zhou, "Effect of Starch Addition on Microstructure and Properties of Highly Porous Alumina Ceramics," Ceram. Int., 39 [8] 8833-39 (2013). https://doi.org/10.1016/j.ceramint.2013.04.072
- P. J. Wilde, "Interface: Their Role in Foam and Emulsion Behavior," Curr. Opin. Colloid Interface Sci., 5 [3] 176-81 (2000). https://doi.org/10.1016/S1359-0294(00)00056-X
- G. Morris, M. R. Pursell, S. J. Neethling, and J. J. Cilliers, "The Effect of Particle Hydrophobicity, Separation Distance and Packing Patterns on the Stability of a Thin Film," J. Colloid Interface Sci., 327 [1] 138-44 (2008). https://doi.org/10.1016/j.jcis.2008.08.007
- U. T. Gonzenbach, A. R. Studart, E. Tervoort and L. J. Gauckler, "Tailoring the Microstructure of Particle-Stabilized Wet Foams," Langmuir, 23 [30] 1025-32 (2007). https://doi.org/10.1021/la0624844
- I. Akartuna, A. R. Studart, E. Tervoort, U. T. Gonzenbach, and L. J. Gauckler, "Stabilization of Oil-in-Water Emulsions by Colloidal Particles Modified with Short Amphiphiles," Langmuir, 24 [14] 7161-68, (2008). https://doi.org/10.1021/la800478g
- A. R. Studart, U. T. Gonzenbach, I. Akartuna, E. Tervoort, and L. J. Gauckler, "Materials from Foams and Emulsions Stabilized by Colloidal Particles," J. Mater. Chem., 17 [31] 3283-89 (2007). https://doi.org/10.1039/b703255b
-
A. Pokhrel, J. G. Park, G. H. Jho, J. Y. Kim, and I. J. Kim, "Controlling the Porosity of Particle Stabilized
$Al_2O_3$ based Ceramics," J. Korean Ceram. Soc., 48 [6] 600-3 (2011). https://doi.org/10.4191/kcers.2011.48.6.600 -
N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "
$Al_2TiO_5$ -Mullite Porous Ceramics from Particle Stabilized Wet Foam," Ceram. Int., 41 [5] 6306-11 (2015). https://doi.org/10.1016/j.ceramint.2015.01.056 - I. Aranberri, B. P. Binks, J. H. Clint, and P. D. I. Fletcher, "Synthesis of Macroporous Silica from Solid-Stabilised Emulsion Templates," J. Porous Mater., 16 [4] 429-37 (2009). https://doi.org/10.1007/s10934-008-9215-x
- U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Ultrastable Particle-Stabilized Foams," Angew. Chem. Int. Ed., 45 3526-30 (2006). https://doi.org/10.1002/anie.200503676
- E. Dickinson, R. Ettelaie, T. Kostakis, and B. S. Murray, "Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles," Langmuir, 20 [20] 8517-25 (2004). https://doi.org/10.1021/la048913k
- T. Fukasawa M. Ando, T. Ohji, and S. Kanzaki, "Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing," J. Am. Ceram. Soc., 84 [1] 230-32 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
- T. Fukasawa, Z. Y. Deng, M. Ando, T. Ohji, and Y. Goto, "Pore Structure of Porous Ceramics Synthesized from Water-Based Slurry by Freeze-Dry Process," J. Mater. Sci., 36 [10] 2523-27 (2001). https://doi.org/10.1023/A:1017946518955
- I. Akartuna, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Emulsions," Adv. Mater., 20 [24] 4714-18 (2008). https://doi.org/10.1002/adma.200801888
- I. Akartuna, E. Tervoort, A. R. Studart, and L. J. Gauckler, "General Route for the Assembly of Functional Inorganic Capsules," Langmuir, 25 [21] 12419-24 (2009). https://doi.org/10.1021/la901916q
- J. T. Richardson, Y. Peng, and D. Remue, "Properties of Ceramic Foam Catalyst Supports: Pressure Drop," Appl. Catal. A, 204 [1] 19-32 (2000). https://doi.org/10.1016/S0926-860X(00)00508-1
- F. A. Acosta G., A. H. Castillejos E., J. M. Almanza R., and A. Flores V., "Analysis of Liquid Flow through Ceramic Porous Media Used for Molten Metal Filtration," Metall. Mater. Trans. B, 26 [1] 159-71 (1995). https://doi.org/10.1007/BF02648988
- D. J. Green and P. Colombo, "Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications," MRS Bull., 28 [4] 296-300 (2003) https://doi.org/10.1557/mrs2003.84
- L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties; Cambridge University Press, Cambridge, 1997.
- P. Colombo and E. Bernarde, "Macro- and Micro-Cellular Porous Ceramics from Preceramic Polymers," Compos. Sci. Technol., 63 [16] 2353-59 (2003). https://doi.org/10.1016/S0266-3538(03)00268-9
- G. R. Pickrell, "Porous Articles and Method for the Manufacture Thereof"; U.S. Patent 9,801,044, 2001.
- Y. W. Kim, Y. J. Jin, Y. S. Chun, I. H. Song, and H. D. Kim, "A Simple Pressing Route to Closed-Cell Microcellular Ceramics," Scr. Mater., 53 [8] 921-25 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.032
- K. Araki and J. W. Halloran, "New Freeze-Casting Technique for Ceramics with Sublimable Vehicles," J. Am. Ceram. Soc., 87 [10] 1859-63 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb06331.x
- H. W. Kim, J. C. Knowles, and H. E. Kim, "Hydroxyapatite and Gelatin Composite Foams Processed via Novel Freeze-Drying and Crosslinking for Use as Temporary Hard Tissue Scaffolds," J. Biomed. Mater. Res., Part A, 72 [2] 136-45 (2005).
- J. A. Lewis and G. M. Granston, "Direct Writing in Three Dimensions," Mater. Today, 7 [7] 32-9 (2004). https://doi.org/10.1016/S1369-7021(04)00344-X
- B. Y. Han, C. J. Shoji, C. J. Hansen, E. Hong, D. C. Dunand, and J. A. Lewis, "Printed Origami Structures," Adv. Mater., 22 [20] 2251-54 (2010). https://doi.org/10.1002/adma.200904232
- I. Sopyan and K. Jasminder, "Preparation and Characterization of Porous Hydroxyapatite through Polymeric Sponge Method," Ceram. Int., 35 [8] 3161-68 (2009). https://doi.org/10.1016/j.ceramint.2009.05.012
- C. Voigt, C. G. Aneziris, and J. Hubalkova, "Rheological Characterization of Slurries for the Preparation of Alumina Foams via Replica Technique," J. Am. Ceram. Soc., 98 [5] 1460-63 (2015). https://doi.org/10.1111/jace.13522
-
F. Razaei, A. Mosca, P. Webley, J. Hedlund, and P. Xiao, "Comparison of Traditional and Structured Adsorbents for
$CO_2$ Separation by Vacuum-Swing Adsorption," Ind. Eng. Chem. Res., 49 [10] 4832-41 (2010). https://doi.org/10.1021/ie9016545 - A. Corma, "From Microporous to Mesoporous Molecular Sieve Materials and their Use in Catalysis," Chem. Rev., 97 [6] 2373-420 (1997). https://doi.org/10.1021/cr960406n
- K. Schwartzwalder, "Method of Making Porous Ceramic Articles"; U.S. Patent 3,090,094, 1961.
- E. Gregorova and W. Pabst, "Process Control and Optimized Preparation of Porous Alumina Ceramics by Starch Consolidation Casting," J. Eur. Ceram. Soc., 31 [12] 2073-81 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.018
- H. Yangcheng, Characterization of Normal and Waxy Corn Starch for Bioethanol Production, Master Thesis, Iowa State University, Iowa, 2012.
- F. A. Almeida, E. C. Botelho, F. C. L. Melo, T. M. B. Campos, and G. Thim, "Influence of Cassava Starch Content and Sintering Temperature on the Alumina Consolidation Technique," J. Eur. Ceram. Soc., 29 [9] 1587-94 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.10.006
- J. Tsubaki, M. Kato, M. Miyazawa, T. Kuma, and H. Mori, "The Effects of the Concentration of a Polymer Dispersant on Apparent Viscosity and Sedimentation Behavior of Dense Slurries," Chem. Eng. Sci., 56 [9] 3021-26 (2001). https://doi.org/10.1016/S0009-2509(00)00485-1
- A. Diaz and S. Hampshire, "Characterisation of Porous Silicon Nitride Materials Produced with Starch," J. Eur. Ceram. Soc., 24 [2] 413-19 (2004). https://doi.org/10.1016/S0955-2219(03)00212-7
- J. H. Eom, Y. W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 [3] 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
- L. M. Sheppard, "Porous Ceramics: Processing and Applications," Ceram. Trans., 31 3-23 (1992).
- P. Colombo, C. V. Ahmetoglu, and S. Costacurta, "Fabrication of Ceramic Components with Hierarchical Porosity," J. Mater. Sci., 45 [20] 5425-55 (2010). https://doi.org/10.1007/s10853-010-4708-9
- B. V. M. Kumar and Y. W. Kim, "Processing of Polysiloxane-Derived Porous Ceramics: A Review," Sci. Technol. Adv. Mater., 11 044303 (2010). https://doi.org/10.1088/1468-6996/11/4/044303
- T. Ohji and M. Fukushima, "Macro-Porous Ceramics: Processing and Properties," Int. Mater. Rev., 57 [2] 115-31 (2012). https://doi.org/10.1179/1743280411Y.0000000006
- P. Nguyen and C. Pham, "Innovative Porous SiC-based Materials: From Nanoscopic Understandings to Tunable Carriers Serving Catalytic Needs," Appl. Catal. A, 391 [1] 443-54 (2011). https://doi.org/10.1016/j.apcata.2010.07.054
- I. Nettleship, "Applications of Porous Ceramics," Key Eng. Mater., 122 305-24 (1996). https://doi.org/10.4028/www.scientific.net/KEM.122-124.305
- T. H. Yoon, H. J. Lee, J. Yan, and D. P. Kim, "Fabrication of SiC-based Ceramic Microstructures from Preceramic Polymers with Sacrificial Templates and Lithographic Techniques-A Review," J. Ceram. Soc. Jpn., 114 [6] (2006).
- J. F. Poco, J. H. S. Jr., and L. W. Hrubesh, "Synthesis of High Porosity, Monolithic Alumina Aerogels," J. Non-Cryst. Solids, 283 [1-3] 57-63 (2001).
- V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano Lopez, and J. Martinez-Fernandez, "Precursor Selection and its Role in the Mechanical Properties of Porous SiC Derived from Wood," Mater. Sci. Eng. A, 428 [1] 225-32 (2006). https://doi.org/10.1016/j.msea.2006.05.033
- P. Greil, "Advanced Engineering Ceramics," Adv. Mater., 14 [10] 709-16 (2002). https://doi.org/10.1002/1521-4095(20020517)14:10<709::AID-ADMA709>3.0.CO;2-9
- F. Schuth, "Engineered Porous Catalytic Materlals," Annu. Rev. Mater. Res., 35 [1] 209-38 (2005). https://doi.org/10.1146/annurev.matsci.35.012704.142050
- K. Ishizaki, S. Komarnei, and M. Nanko, Porous Materials: Process Technology and Applications; Kluwer Academic Publishers, Boston, 1998.
- R. Mouazer, I. Thijs, S. Mullens, and J. Luyten, "SiC Foams Produced by Gel Casting: Synthesis and Characterization," Adv. Eng. Mater., 6 [5] 340-43 (2004). https://doi.org/10.1002/adem.200400009
- S. Barg, C. Soltmann, M. Andrade, D. Koch, and G. Grathwohl, "Cellular Ceramics by Direct Foaming of Emulsified Ceramic Powder Suspensions," J. Am. Ceram. Soc., 91 [9] 2823-29 (2008). https://doi.org/10.1111/j.1551-2916.2008.02553.x
-
D. Megias-Alguacil, E. Tervoort, C. Cattin, and L. J. Gauckler, "Contact Angle and Adsorption Behavior of Carboxylic Acids on Alpha-
$Al_2O_3$ Surfaces," J. Colloid Interface Sci., 353 [2] 512-18 (2011). https://doi.org/10.1016/j.jcis.2010.09.087 - W. Y. Jang, J. G. Park, B. Basnet, K. T. Woo, I. S. Han, and I. J. Kim, "Highly Porous SiC Ceramics from Particle-Stabilized Suspension," J. Aust. Ceram. Soc., 53 [2] 657-65 (2017). https://doi.org/10.1007/s41779-017-0077-z
-
S. Bhaskar, J. G. Park, I. J. Kim, B. H. Kang, and T. Y. Lim, "
$ZrTiO_4$ Porous Ceramics Fabricated from Particle-Stabilized Wet Foam by Direct Foaming," J. Korean Phys. Soc., 68 [1] 77-82 (2016). https://doi.org/10.3938/jkps.68.77 -
N. Sarkar, K. S. Lee, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Mechanical and Thermal Properties of Highly Porous
$Al_2TiO_5$ -Mullite Ceramics," Ceram. Int., 42 [2] 3548-55 (2016). https://doi.org/10.1016/j.ceramint.2015.11.002 - S. Bhaskar, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Effect of Surfactant on Adsorption Free Energy and Laplace Pressure of Wet Foam Stability to Porous Ceramics," J. Ceram. Proc. Res., 16 [1] 1-4 (2015). https://doi.org/10.36410/JCPR.2015.16.1.1
-
C. R. Rambo and H. Sieber, "Novel Synthetic Route to Biomorphic
$Al_2O_3$ Ceramics," Adv. Mater., 17 [8] 1088-91 (2005). https://doi.org/10.1002/adma.200401049 - T. Isobe, Y. Kameshima, A. Nakajima, K. Okada, and Y. Hotta, "Gas Permeability and Mechanical Properties of Porous Alumina Ceramics with Unidirectionally Aligned Pores," J. Eur. Ceram. Soc., 27 [1] 53-9 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.02.030
- E. C. Hammel, O. L. R. Ighodaro, and O. I. Okoli, "Processing and Properties of Advanced Porous Ceramics: An Application Based Review," Ceram. Int., 40 [10, Part A] 15351-70 (2014). https://doi.org/10.1016/j.ceramint.2014.06.095
- C. Chuanuwatanakul, C. Tallon, D. E. Dunstan, and G. V. Franks, "Producing Large Complex-Shaped Ceramic Particle Stabilized Foams," J. Am. Ceram. Soc., 96 [5] 1407-13 (2013). https://doi.org/10.1111/jace.12294
-
S. Bhaskar, D. N. Seo, J. G. Park, G. H. Cho, B. H. Kang, T. Y. Lim, and I. J. Kim, "
$Al_2O_3-TiO_2$ Porous Ceramics from Particle-Stabilized Wet Foam by Direct Foaming," J. Ceram. Process. Res., 16 [5] 643-47 (2015). https://doi.org/10.36410/JCPR.2015.16.5.643 -
N. Sarkar, J. G. Park, D. N. Seo, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Influence of Amphiphile on Foam Stability of
$Al_2O_3-SiO_2$ Colloidal Suspension to Porous Ceramics," J. Ceram. Process. Res., 16 [4] 392-96 (2015). https://doi.org/10.36410/JCPR.2015.16.4.392 - A. Stocco, W. Drenckhan, E. Rio, D. Langevin, and B. P. Binks, "Particle-Stabilised Foams: An Interfacial Study," Soft Matter, 5 [11] 2215-22 (2009). https://doi.org/10.1039/b901180c
- B. S. Murray and R. Ettelaie, "Foam Stability: Proteins and Nanoparticles," Curr. Opin. Colloid Interface Sci., 9 [5] 314-20 (2004). https://doi.org/10.1016/j.cocis.2004.09.004
- W. Zhao, S. Bhaskar, J. G. Park, S. Y. Kim, I. S. Han, and I. J. Kim, "Particle-Stabilized Wet Foams to porous Ceramics by Direct Foaming," J. Ceram. Process. Res., 15 [6] 503-7 (2014). https://doi.org/10.36410/JCPR.2014.15.6.503
- A. Pokhrel, J. G. Park, W. Zhao, and I. J. Kim, "Functional Porous Ceramics Using Amphiphilic Molecule," J. Ceram. Process Res., 13 [4] 420-24 (2012). https://doi.org/10.36410/JCPR.2012.13.4.420
- I. Lesov, S. Tcholakova, and N. Denkov, "Factors Controlling the Formation and Stability of Foams Used as Precursors of Porous Materials," J. Colloid Interface Sci., 426 9-21 (2014). https://doi.org/10.1016/j.jcis.2014.03.067
- A. Pokhrel, D. N. Seo, S. T. Lee, and I. J. Kim, "Processing of Porous Ceramics by Direct Foaming: A Review," J. Korean Ceram. Soc, 50 [2] 93-100 (2013). https://doi.org/10.4191/kcers.2013.50.2.093
- B. J. Briscoe, A. U. Khan, and P. F. Luckham, "Optimising the Dispersion on an Alumina Suspension Using Commercial Polyvalent Electrolyte Dispersants," J. Eur. Ceram. Soc., 18 [14] 2141-47 (1998). https://doi.org/10.1016/S0955-2219(98)00147-2
-
X.-L. Wei, N. Li, W. J. Yi, L.-J. Li, and Z.-S. Chao, "High Performance Super-Hydrophobic
$ZrO_2-SiO_2$ Porous Ceramics Coating with Flower-like$CeO_2$ Micro/Nano-Structure," Surf. Coat. Technol., 325 565-71 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.004 - M. S. Nasser and A. E. James, "The Effect of Electrolyte Concentration and pH on the Flocculation and Rheological Behavior of Kaolinite Suspensions," J. Eng. Sci. Technol., 4 [4] 430-46 (2009).
- S. Dhara and P. Bhargava, "Influence of Slurry Characteristics on Porosity and Mechanical Properties of Alumina Foams," Int. J. Appl. Ceram. Technol., 3 [5] 382-92 (2006). https://doi.org/10.1111/j.1744-7402.2006.02098.x
- Q. Zhang, W. Li, M. Gu, and Y. Jin, "Dispersion and Rheological Properties of Concentrated Silicon Aqueous Suspension," Powder Technol., 161 [2] 130-34 (2006). https://doi.org/10.1016/j.powtec.2005.10.005
- N. Demirkol and A. Capoglu, "Rheological and Green Strength Behaviour of Low-Clay Translucent Whiteware Slurries with an Acrylic Type Emulsion Binder Addition"; pp. 434-38 in Proceedings of the European Ceramic Society for 10th International Conference and Exhibition of the European Ceramic Society. Berlin, Germany, 2007.
- M. V. A. Umaran and R. L. Menchavez, "Aqueous Dispersion of Red Clay-based Ceramic Powder with the Addition of Starch," Mater. Res., 16 375-84 (2013). https://doi.org/10.1590/S1516-14392013005000002
- D. Sharma and A. Mukherjee, "Essential Parameters Responsible for Rheological Assessment of Concentrated Dispersion:-A Comprehensive Review," J. Ceram. Process. Res., 16 [6] 690-704 (2015). https://doi.org/10.36410/JCPR.2015.16.6.690
- H. Sarraf and J. Havrda, "Rheological Behavior of Concentrated Alumina Suspension: Effect of Electrosteric Stabilization," Ceram.-Silik., 51 [3] 147-52 (2007).
- Y.-J. Shin, C.-C. Su, and Y.-H. Shen, "Dispersion of Aqueous Nano-Sized Alumina Suspensions Using Cationic Polyelectrolyte," Mater. Res. Bull., 41 [10] 1964-71 (2006). https://doi.org/10.1016/j.materresbull.2006.01.032
- J. T. Muth, P. G. Dixon, L. Woish, L. J. Gibson, and J. A. Lewis, "Architected Cellular Ceramics with Tailored Stiffness via Direct Foam Writing," PNAS, 114 [8] 1832-7 (2017). https://doi.org/10.1073/pnas.1616769114
- A. R. Studart, V. C. Pandolfelli, E. Tervoort and L. J. Gauckler, "Selection of Dispersants for High-Alumina Zero-Cement Refractory Castables," J. Eur. Ceram. Soc., 23 [7] 997-1004 (2003). https://doi.org/10.1016/S0955-2219(02)00275-3
- S. M. Olhero and J. M. F. Ferreira, "Influence of Particle Size Distribution on Rheology and Particle Packing of Silica-based Suspensions," Powder Technol., 139 [1] 69-75 (2004). https://doi.org/10.1016/j.powtec.2003.10.004
- A. Mukherjee, R. Khan, B. Bera and H. S. Maiti, "I: Dispersibility of Robust Alumina Particles in Non-Aqueous Solution," Ceram. Int., 34 [3] 523-29 (2008). https://doi.org/10.1016/j.ceramint.2006.11.009
- R. Moreno and B. Ferrari, "Effect of the Slurry Properties on the Homogeneity of Alumina Deposits Obtained by Aqueous Electrophoretic Deposition," Mater. Res. Bull., 35 [6] 887-97 (2000). https://doi.org/10.1016/S0025-5408(00)00288-9
- W. Y. Jang, J. G. Park, I. S. Han, H. M. Lim, T. Y. Lim, and I. J. Kim, "Effect of Surfactant on Wet Foam Stability to SiC Porous Ceramics," J. Ceram. Process. Res., 18 [12] 887-93 (2017). https://doi.org/10.36410/JCPR.2017.18.12.887
- P. A. Smith and R. A. Haber, "Effect of Particle Packing on the Filtration and Rheology Behavior of Extended Size Distribution Alumina Suspensions," J. Am. Ceram. Soc., 78 [7] 1737-44 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08883.x
- W. Y. Jang, B. Basnet, J. G. Park, H. M. Lim, T. Y. Lim, and I. J. Kim, "Effect of Albumin Content on the Rheological Properties and Wet Foam Stability of Porous Ceramics," J. Ceram. Process. Res., 19 [4] 296-301 (2018). https://doi.org/10.36410/JCPR.2018.19.4.296
- A. J. Wilson, Foams: Physics, Chemistry, and Structure; Springer Verlag, Berlin, 1989.
- M. Davis, "Basic Physics of Foam Stability and Collapse," NAVAIR Naval Air Systems Command Naval Fuels & Lubricants CFT Rept. No. 441/21-009, June 2012.
- P. R. Garret, Defoaming: Theory and Industrial Applications; Marcel Dekker, New York, 1993.
- D. Weaire and S. Hutzler, The Physics of Foams; Oxford University Press, New York, 1999.
- D. Douglas, "The Physics of Foam-Introduction," pp. 1-26 in Physics of Soft Condensed Matter Lecture Series, Boulder, CO, 2002.
- P. C. Himenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry; 3th Edition, Revised and Expanded, Dekker, New York, 1997.
- C. Tuck and J. R. G. Evans, "Porous Ceramics Prepared From Aqueous Foams," J. Mater. Sci. Lett., 18 [13] 1003-5 (1999). https://doi.org/10.1023/A:1006665829967
- A. R. Studart, R. Libanori, A. Moreno, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Unifying Model for the Electrokinetic and Phase Behavior of Aqueous Suspensions Containing Short and Long Amphiphiles," Langmuir, 27 [19] 11835-44 (2011). https://doi.org/10.1021/la202384b
- E. C. Hammel, O. L. R. Ighodaro, and O. I. Okoli, "Processing and Properties of Advanced Porous Ceramics: An Application Based Review," Ceram. Int., 40 [10] 15351-70 (2014). https://doi.org/10.1016/j.ceramint.2014.06.095
- A. Pokhrel, J. Gyu Park, J. Sic Nam, D. Soo, and I. J. Kim, "Stabilization of Wet Foams for Porous Ceramics Using Amphiphilic Particles," J. Korean Ceram. Soc., 48 [5] 463-66 (2011). https://doi.org/10.4191/kcers.2011.48.5.463
- Y. Q. Sun and T. Gao, "The Optimum Wetting Angle for the Stabilization of Liquid-Metal Foams by Ceramic Particles: Experimental Simulations," Metall. Mater. Trans. A, 33 [10] 3285-92 (2002). https://doi.org/10.1007/s11661-002-0315-y
- N. Sarkar, J. G. Park, S. Mazumder, and I. J. Kim, "Stabilization of Nano-Particles in Concentrated Colloidal Suspension to Porous Ceramics," J. Ceram. Process. Res., 16 [2] 272-25 (2015). https://doi.org/10.36410/JCPR.2015.16.2.272
- G. Kaptay, "On the Equation of the Maximum Capillary Pressure Induced by Solid Particles to Stabilize Emulsions and Foams and on the Emulsion Stability Diagrams," Colloids Surf., A, 282-283 387-401 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.021
- G. Kaptay, "Interfacial Criteria for Stabilization of Liquid Foams by Solid Particles," Colloids Surf., A, 230 [1] 67-80 (2003). https://doi.org/10.1016/j.colsurfa.2003.09.016
- L. A. Pugnaloni, E. Dickinson, R. Ettelaie, A. R. Mackie, and P. J. Wilde, "Competitive Adsorption of Proteins and Low-Molecular-Weight Surfactants: Computer Simulation and Microscopic Imaging," Adv. Colloid Interface Sci., 107 [1] 27-49 (2004). https://doi.org/10.1016/j.cis.2003.08.003
-
S. Bhaskar, J. G. Park, I. S. Han, M. J. Lee, T. Y. Lim, and I. J. Kim, "Particle Stabilized Wet Foam to Prepare
$SiO_2$ -SiC Porous Ceramics by Colloidal Processing," J. Korean Ceram. Soc., 52 [6] 455-61 (2015). https://doi.org/10.4191/kcers.2015.52.6.455 - T. S. Horozov, "Foams and Foam Films Stabilised by Solid Particles," Curr. Opin. Colloid Interface Sci., 13 [3] 134-40 (2008). https://doi.org/10.1016/j.cocis.2007.11.009
- A. R. Studart, J. Studer, L. Xu, K. Yoon, H. C. Shum, and D. A. Weitz, "Hierarchical Porous Materials Made by Drying Complex Suspensions," Langmuir, 27 [3] 955-64 (2011). https://doi.org/10.1021/la103995g
- F. Schuth and W. Schmidt, "Microporous and Mesoporous Materials," Adv. Mater., 14 [9] 629-38 (2002). https://doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
- J. C. H. Wong, E. Tervoort, S. Busato, U. T. Gonzenbach, A. R. Studart, P. Ermanni, and L. J. Gauckler, "Designing Macroporous Polymers from Particle-Stabilized Foams," J. Mater. Chem., 20 [27] 5628-40 (2010). https://doi.org/10.1039/c0jm00655f
- P. Sepulveda, "Gelcasting Foams for Porous Ceramics," Am. Ceram. Soc. Bull., 76 [10] 61-5 (1997).
- I. H. Arita, V. M. Castano, and D. S. Wilkinson, "Synthesis and Processing of Hydroxyapatite Ceramic Tapes with Controlled Porosity," J. Mater. Sci.: Mater. Med., 6 [1] 19-23 (1995). https://doi.org/10.1007/BF00121241
- A. Pokhrel, W. Zhao, and I. J. Kim, "Wet Foam Stabilized by Amphiphiles to Tailor the Microstructure of Porous Ceramics," Key Eng. Mater., 512 288-92 (2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.288
- N. Sarkar and I. J. Kim, "Porous Ceramics," in Advanced Ceramic Processing, Ed. by A. M. A. Mohamed, IntechOpen, London, 2015.
- I. Y. Guzman, "Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review)," Glass Ceram., 60 [9] 280-83 (2003). https://doi.org/10.1023/b:glac.0000008227.85944.64
-
Z. Bazelova, L. Pach, J. Lokaj, and V. Kovar, "Properties of
$Al_2O_3$ Foams Optimized by Factorial Design," Ceramics-Silik., 55 [3] 240-45 (2011). - X. Deng, J. Wang, S. Du, F. Li, L. Lu, and H. Zhang, "Fabrication of Porous Ceramics by Direct Foaming," Interceram. Int. Ceram. Rev., 63 [3] 104-8 (2014). https://doi.org/10.1007/bf03401041
- A. Korjakins, L. Upeniece, and D. Bajare, "High Efficiency Porous Ceramics with Controllable Porosity"; pp. 5-10 in Proceedings of the CIVIL ENGINEERING '13 for 4th International Scientific Conference. Jelgava, Latvia 2013.
- W. Y. Jang, D. N. Seo, J. G. Park, H. T. Kim, S. M. Lee, S. Y. Kim, and I. J. Kim, "Highly-Closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming," J. Korean Ceram. Soc, 53 [6] 604-9 (2016). https://doi.org/10.4191/kcers.2016.53.6.604
-
S. Bhaskar, G. H. Cho, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Micro Porous
$SiO_2$ -SiC Ceramics from Particle Stabilized Foams by Direct Foaming," J. Ceram. Soc. Jpn., 123 [1437] 378-82 (2015). https://doi.org/10.2109/jcersj2.123.378 - R. Ahmad, J.-H. Ha, and I.-H. Song, "Processing Methods for the Preparation of Porous Ceramics," J. Korean Powd. Metall. Inst., 21 [5] 389-98 (2014). https://doi.org/10.4150/KPMI.2014.21.5.389
- E. P. Santos, C. V. Santilli, and S. H. Pulcinelli, "Effect of Aging on the Stability of Ceramic Foams Prepared by Thermostimulated Sol-Gel Process," J. Sol-Gel Sci. Technol., 26 [1] 165-69 (2003). https://doi.org/10.1023/A:1020726426981
- P. Nguyen and C. Pham, "Innovative Porous SiC-based Materials: From Nanoscopic Understandings to Tunable Carriers Serving Catalytic Needs," Appl. Catal. A, 391 [1] 443-54 (2011). https://doi.org/10.1016/j.apcata.2010.07.054
-
G. Liu, P. Dai, Y. Wang, J. Yang, and G. Qiao, "Fabrication of Pure SiC Ceramic Foams Using
$SiO_2$ as a Foaming Agent via High-Temperature Recrystallization," Mater. Sci. Eng. A, 528 [6] 2418-22 (2011). https://doi.org/10.1016/j.msea.2010.12.063 - M. Zorko, S. Novak, and M. Gaberscek, "Fast Fabrication of Mesoporous SiC with High and Highly Ordered Porosity from Ordered Silica Templates," J. Ceram. Process. Res., 12 [6] 654-59 (2011). https://doi.org/10.36410/JCPR.2011.12.6.654
- F. Leal-Calderon, "Emulsified Lipids: Formulation and Control of End-Use Properties," OCL, 19 [2] 111-9 (2012). https://doi.org/10.1051/ocl.2012.0438
Cited by
- Core-shell-structured Fe3O4 nanocomposite particles for high-performance/stable magnetorheological fluids: preparation and characteristics vol.57, pp.6, 2019, https://doi.org/10.1007/s43207-020-00070-9
- Reduction of structural hierarchy translates into variable influence on the performance of boron nitride aerogel vol.24, pp.3, 2019, https://doi.org/10.1016/j.isci.2021.102251
- Properties of Surface Heating Textile for Functional Warm Clothing Based on a Composite Heating Element with a Positive Temperature Coefficient vol.11, pp.4, 2021, https://doi.org/10.3390/nano11040904
- Mechanical properties of carbon fiber-reinforced Al2O3 porous ceramics vol.58, pp.3, 2021, https://doi.org/10.1007/s43207-020-00105-1
- Synthesis and characterization of low-cost hierarchical porous silica by nanoemulsion templating: influence of nanoemulsion volume and hydrodynamic diameter vol.99, pp.1, 2019, https://doi.org/10.1007/s10971-021-05543-9
- Bioactive Calcium Phosphate-Based Composites for Bone Regeneration vol.5, pp.9, 2019, https://doi.org/10.3390/jcs5090227