DOI QR코드

DOI QR Code

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Park, Jung Gyu (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Han, Young Han (Department of Materials Science and Engineering, Wuhan University of Technology) ;
  • Kim, Suk Young (Department of Materials Science and Engineering, Yeungnam University) ;
  • Shackelford, James F. (Department of Materials Science and Engineering, University of California)
  • Received : 2019.03.04
  • Accepted : 2019.04.01
  • Published : 2019.05.31

Abstract

Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

Keywords

References

  1. M. Scheffler, and P. Colombo, Cellular Ceramics: Structure, Manufacturing, Properties and Applications; Wiley-VCH, Weinheim, 2005.
  2. A. R. Stuart, U. T. Gonzenbach, and E. Tervoort, "Processing Routes to Macroporous Ceramics: A Review," J. Am. Ceram. Soc., 89 [6] 1771-89 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  3. J. Banhart, "Manufacturing Routes for Metallic Foams," JOM, 52 [12] 22-7 (2000). https://doi.org/10.1007/s11837-000-0062-8
  4. N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Effect of Amphiphile Chain Length on Wet Foam Stability of Porous Ceramics," Ceram. Int., 41 [3] 4021-27 (2015). https://doi.org/10.1016/j.ceramint.2014.11.089
  5. J. Banhart, "Manufacture, Characterisation and Application of Cellular Metals and Metal Foams," Prog. Mater. Sci., 46 [6] 559-632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5
  6. W. Ramsden, "Separation of Solids in the Surface-Layers of Solutions and 'Suspensions'," Proc. R. Soc. London, 72 156-64 (1903). https://doi.org/10.1098/rspl.1903.0034
  7. I. Ya. Guzman, "Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review)," Glass Ceram., 60 [9] 280-83 (2003). https://doi.org/10.1023/b:glac.0000008227.85944.64
  8. P. Colombo and J. R. Hellmann, "Ceramic Foams from Preceramic Polymers," Mater. Res. Innovations, 6 [5] 260-72 (2002). https://doi.org/10.1007/s10019-002-0209-z
  9. H. M. Princen and A. D. Kiss, "Rheology of Foams and Highly Concentrated Emulsions: IV. An Experimental Study of the Shear Viscosity and Yield Stress of Concentrated Emulsions," J. Colloid Interface Sci., 128 [1] 176-87 (1989). https://doi.org/10.1016/0021-9797(89)90396-2
  10. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics; 2nd Edition, Wiley, New York, 1976.
  11. P. Colombo, "Conventional and Novel Processing Methods for Cellular Ceramics," Philos. Trans. R. Soc., A, 364 [1838] 109-24 (2006). https://doi.org/10.1098/rsta.2005.1683
  12. B. Neirinck, J. Fransaer, O. V. der Biest, and J. Vleugels, "A Novel Route to Produce Porous Ceramics," J. Eur. Ceram. Soc., 29 [5] 833-36 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.009
  13. B. P. Binks, "Particles as Surfactants-Similarities and Differences," Curr. Opin. Colloid Interface Sci., 7 [1] 21-41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0
  14. M. D. M. Innocentini, P. Sepulveda, V. R. Salvini, V. C. Pandolfelli, and J. R. Coury, "Permeability and Structure of Cellular Ceramics: A Comparison between Two Preparation Techniques," J. Am. Ceram. Soc., 81 [12] 3349-52 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02782.x
  15. O. Lyckfeldt and J. M. F. Ferreira, "Processing of Porous Ceramics by 'Starch Consolidation'," J. Eur. Ceram. Soc., 18 [2] 131-40 (1998). https://doi.org/10.1016/S0955-2219(97)00101-5
  16. J. Saggio-Woyansky, C. E. Scott, and W. P. Minnear, "Processing of Porous Ceramics," Am. Ceram. Soc. Bull., 71 [11] 1674-82 (1992).
  17. H. R. Ramay and M. Zhang, "Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-Casting and Polymer Sponge Methods," Biomaterials, 24 [19] 3293-302 (2003). https://doi.org/10.1016/S0142-9612(03)00171-6
  18. C. Galassi, "Processing of Porous Ceramics: Piezoelectric Materials," J. Eur. Ceram. Soc., 26 [14] 2951-58 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.011
  19. F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, "Preparation of Porous Materials with Controlled Pore Size and Porosity," J. Eur. Ceram. Soc., 24 [2] 341-44 (2004) https://doi.org/10.1016/S0955-2219(03)00223-1
  20. N. Sarkar, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Processing of Particle Stabilized $Al_2TiO_5-ZrTiO_4$ Foam to Porous Ceramics," J. Eur. Ceram. Soc., 35 [14] 3969-76 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.07.004
  21. B. S. Murray, "Stabilization of Bubbles and Foams," Curr. Opin. Colloid Interface Sci., 12 [4] 232-41 (2007). https://doi.org/10.1016/j.cocis.2007.07.009
  22. T. S. Horozov, "Foams and Foam Films Stabilised by Solid Particles," Curr. Opin. Colloid Interface Sci., 13 [3] 134-40 (2008). https://doi.org/10.1016/j.cocis.2007.11.009
  23. P. C. Hidber, T. J. Graule, and L. J. Gauckler, "Influence of the Dispersant Structure on Properties of Electrostatically Stabilized Aqueous Alumina Suspensions," J. Eur. Ceram. Soc., 17 [2] 239-49 (1997). https://doi.org/10.1016/S0955-2219(96)00151-3
  24. B. Basnet, N. Sarkar, J. G. Park, S. Mazumder, and I. J. Kim, "$Al_2O_3-TiO_2/ZrO_2-SiO_2$ based Porous Ceramics from Particle-Stabilized Wet Foam," J. Adv. Ceram., 6 [2] 129-38 (2017). https://doi.org/10.1007/s40145-017-0225-5
  25. S. Bhaskar, J. G. Park, G. H. Cho, S. Y. Kim, and I. J. Kim, "Wet Foam Stability and Tailoring Microstructure of Porous Ceramics Using Polymer Beads," Adv. Appl. Ceram., 114 [6] 333-37 (2015). https://doi.org/10.1179/1743676115Y.0000000004
  26. L. J. Gauckler, M. M. Waeber, C. Conti, and M. Jacob-Duliere, "Ceramic Foam for Molten Filtration," JOM, 37 [9] 47-50 (1985). https://doi.org/10.1007/BF03258640
  27. Y. Shan, J. F. Yang, J. Q. Gao, W. H. Zhang, Z. H. Jin, R. Janssen, and T. Ohji, "Porous Silicon Nitride Ceramics Prepared by Reduction-Nitridation of Silica," J. Am. Ceram. Soc., 88 [9] 2594-96 (2005). https://doi.org/10.1111/j.1551-2916.2005.00444.x
  28. N. D. Denkov, I. B. Ivanov, P. A. Kralchevsky, and D. T. Wasan, "A Possible Mechanism of Stabilization of Emulsions by Solid Particles," J. Colloid Interface Sci., 150 [2] 589-93 (1992). https://doi.org/10.1016/0021-9797(92)90228-E
  29. L. J. Gauckler, Th. Graule, and F. Baader, "Ceramic Forming Using Enzyme Catalyzed Reactions," Mater. Chem. Phys., 61 [1] 78-102 (1999). https://doi.org/10.1016/S0254-0584(99)00117-0
  30. S. Bhaskar, J. G. Park, M. J. Lee, T. Y. Lim, I. S. Han, and I. J. Kim, "$ZrO_2-TiO_2$ Porous Ceramics from Particle Stabilized Wet Foam by Colloidal Processing," J. Ceram. Soc. Jpn., 124 [1] 106-10 (2016). https://doi.org/10.2109/jcersj2.15170
  31. I. Lesov, S. Tcholakova, and N. Denkov, "Factors Controlling the Formation and Stability of Foams Used as Precursors of Porous Materials," J. Colloid Interface Sci., 426 9-21 (2014). https://doi.org/10.1016/j.jcis.2014.03.067
  32. C. Hill and J. Eastoe, "Foams: From Nature to Industry," Adv. Colloid Interface Sci., 247 496-13 (2017). https://doi.org/10.1016/j.cis.2017.05.013
  33. A. B. Subramaniam, C. Mejean, M. Abkarian, and H. A. Stone, "Microstructure, Morphology and Lifetime of Armored Bubbles Exposed to Surfactants," Langmuir, 22 [14] 5986-90 (2006). https://doi.org/10.1021/la060388x
  34. U. T. Gonzenbach, A. R. Studart, D. Steinlin, E. Tervoort, and L. J. Gauckler, "Processing of Particle-Stabilized Wet Foams into Porous Ceramics," J. Am. Ceram. Soc., 90 [11] 3407-14 (2007). https://doi.org/10.1111/j.1551-2916.2007.01907.x
  35. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Stabilization of Foams with Inorganic Colloidal Particles," Langmuir, 22 [26] 10983-88 (2006). https://doi.org/10.1021/la061825a
  36. T. N. Hunter, R. J. Pugh, G. V. Franks, and G. J. Jameson, "A Role of Particles in Stabilizing Foams and Emulsions," Adv. Colloid Interface Sci., 137 [2] 57-81 (2008). https://doi.org/10.1016/j.cis.2007.07.007
  37. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Wet Foams," J. Am. Ceram. Soc., 90 [1] 16-22 (2007). https://doi.org/10.1111/j.1551-2916.2006.01328.x
  38. K. Kamitani, T. Hyodo, Y. Shimizu, and M. Egashira, "Fabrication of Highly Porous Alumina-based Ceramics with Connected Space by Employing PMMA Microspheres as a Template," Adv. Mater. Sci. Eng., 2009 601850 (2009).
  39. G. J. Zhang, J. F. Yang, and T. Ohji, "Fabrication of Porous Ceramics with Unidirectionally Aligned Continuous Pores," J. Am. Ceram. Soc., 84 [6] 1395-57 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00849.x
  40. F. K. Yang, C. Li, Y. Lin, and C. A. Wang, "Fabrication of Porous Mullite Ceramics with High Porosity Using Foam-Gelcasting," Key Eng. Mater., 512-515 580-85 (2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.580
  41. W. Y. Jang, D. N. Seo, B. Basnet, J. G. Park, I. S. Han, and I. J. Kim, "Tailoring the Microstructure of $Al_2O_3-SiO_2$ Porous Ceramics through Starch Consolidation by Direct Foaming," J. Ceram. Process. Res., 18 [4] 275-79 (2017). https://doi.org/10.36410/JCPR.2017.18.4.275
  42. P. Sepulveda and J. G. P. Binner, "Processing of Cellular Ceramics by Foaming and in situ Polymerisation of Organic Monomers," J. Eur. Ceram. Soc., 19 [12] 2059-66 (1999). https://doi.org/10.1016/S0955-2219(99)00024-2
  43. S. Li, C. A. Wang, and J. Zhou, "Effect of Starch Addition on Microstructure and Properties of Highly Porous Alumina Ceramics," Ceram. Int., 39 [8] 8833-39 (2013). https://doi.org/10.1016/j.ceramint.2013.04.072
  44. P. J. Wilde, "Interface: Their Role in Foam and Emulsion Behavior," Curr. Opin. Colloid Interface Sci., 5 [3] 176-81 (2000). https://doi.org/10.1016/S1359-0294(00)00056-X
  45. G. Morris, M. R. Pursell, S. J. Neethling, and J. J. Cilliers, "The Effect of Particle Hydrophobicity, Separation Distance and Packing Patterns on the Stability of a Thin Film," J. Colloid Interface Sci., 327 [1] 138-44 (2008). https://doi.org/10.1016/j.jcis.2008.08.007
  46. U. T. Gonzenbach, A. R. Studart, E. Tervoort and L. J. Gauckler, "Tailoring the Microstructure of Particle-Stabilized Wet Foams," Langmuir, 23 [30] 1025-32 (2007). https://doi.org/10.1021/la0624844
  47. I. Akartuna, A. R. Studart, E. Tervoort, U. T. Gonzenbach, and L. J. Gauckler, "Stabilization of Oil-in-Water Emulsions by Colloidal Particles Modified with Short Amphiphiles," Langmuir, 24 [14] 7161-68, (2008). https://doi.org/10.1021/la800478g
  48. A. R. Studart, U. T. Gonzenbach, I. Akartuna, E. Tervoort, and L. J. Gauckler, "Materials from Foams and Emulsions Stabilized by Colloidal Particles," J. Mater. Chem., 17 [31] 3283-89 (2007). https://doi.org/10.1039/b703255b
  49. A. Pokhrel, J. G. Park, G. H. Jho, J. Y. Kim, and I. J. Kim, "Controlling the Porosity of Particle Stabilized $Al_2O_3$ based Ceramics," J. Korean Ceram. Soc., 48 [6] 600-3 (2011). https://doi.org/10.4191/kcers.2011.48.6.600
  50. N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "$Al_2TiO_5$-Mullite Porous Ceramics from Particle Stabilized Wet Foam," Ceram. Int., 41 [5] 6306-11 (2015). https://doi.org/10.1016/j.ceramint.2015.01.056
  51. I. Aranberri, B. P. Binks, J. H. Clint, and P. D. I. Fletcher, "Synthesis of Macroporous Silica from Solid-Stabilised Emulsion Templates," J. Porous Mater., 16 [4] 429-37 (2009). https://doi.org/10.1007/s10934-008-9215-x
  52. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Ultrastable Particle-Stabilized Foams," Angew. Chem. Int. Ed., 45 3526-30 (2006). https://doi.org/10.1002/anie.200503676
  53. E. Dickinson, R. Ettelaie, T. Kostakis, and B. S. Murray, "Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles," Langmuir, 20 [20] 8517-25 (2004). https://doi.org/10.1021/la048913k
  54. T. Fukasawa M. Ando, T. Ohji, and S. Kanzaki, "Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing," J. Am. Ceram. Soc., 84 [1] 230-32 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  55. T. Fukasawa, Z. Y. Deng, M. Ando, T. Ohji, and Y. Goto, "Pore Structure of Porous Ceramics Synthesized from Water-Based Slurry by Freeze-Dry Process," J. Mater. Sci., 36 [10] 2523-27 (2001). https://doi.org/10.1023/A:1017946518955
  56. I. Akartuna, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Emulsions," Adv. Mater., 20 [24] 4714-18 (2008). https://doi.org/10.1002/adma.200801888
  57. I. Akartuna, E. Tervoort, A. R. Studart, and L. J. Gauckler, "General Route for the Assembly of Functional Inorganic Capsules," Langmuir, 25 [21] 12419-24 (2009). https://doi.org/10.1021/la901916q
  58. J. T. Richardson, Y. Peng, and D. Remue, "Properties of Ceramic Foam Catalyst Supports: Pressure Drop," Appl. Catal. A, 204 [1] 19-32 (2000). https://doi.org/10.1016/S0926-860X(00)00508-1
  59. F. A. Acosta G., A. H. Castillejos E., J. M. Almanza R., and A. Flores V., "Analysis of Liquid Flow through Ceramic Porous Media Used for Molten Metal Filtration," Metall. Mater. Trans. B, 26 [1] 159-71 (1995). https://doi.org/10.1007/BF02648988
  60. D. J. Green and P. Colombo, "Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications," MRS Bull., 28 [4] 296-300 (2003) https://doi.org/10.1557/mrs2003.84
  61. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties; Cambridge University Press, Cambridge, 1997.
  62. P. Colombo and E. Bernarde, "Macro- and Micro-Cellular Porous Ceramics from Preceramic Polymers," Compos. Sci. Technol., 63 [16] 2353-59 (2003). https://doi.org/10.1016/S0266-3538(03)00268-9
  63. G. R. Pickrell, "Porous Articles and Method for the Manufacture Thereof"; U.S. Patent 9,801,044, 2001.
  64. Y. W. Kim, Y. J. Jin, Y. S. Chun, I. H. Song, and H. D. Kim, "A Simple Pressing Route to Closed-Cell Microcellular Ceramics," Scr. Mater., 53 [8] 921-25 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.032
  65. K. Araki and J. W. Halloran, "New Freeze-Casting Technique for Ceramics with Sublimable Vehicles," J. Am. Ceram. Soc., 87 [10] 1859-63 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb06331.x
  66. H. W. Kim, J. C. Knowles, and H. E. Kim, "Hydroxyapatite and Gelatin Composite Foams Processed via Novel Freeze-Drying and Crosslinking for Use as Temporary Hard Tissue Scaffolds," J. Biomed. Mater. Res., Part A, 72 [2] 136-45 (2005).
  67. J. A. Lewis and G. M. Granston, "Direct Writing in Three Dimensions," Mater. Today, 7 [7] 32-9 (2004). https://doi.org/10.1016/S1369-7021(04)00344-X
  68. B. Y. Han, C. J. Shoji, C. J. Hansen, E. Hong, D. C. Dunand, and J. A. Lewis, "Printed Origami Structures," Adv. Mater., 22 [20] 2251-54 (2010). https://doi.org/10.1002/adma.200904232
  69. I. Sopyan and K. Jasminder, "Preparation and Characterization of Porous Hydroxyapatite through Polymeric Sponge Method," Ceram. Int., 35 [8] 3161-68 (2009). https://doi.org/10.1016/j.ceramint.2009.05.012
  70. C. Voigt, C. G. Aneziris, and J. Hubalkova, "Rheological Characterization of Slurries for the Preparation of Alumina Foams via Replica Technique," J. Am. Ceram. Soc., 98 [5] 1460-63 (2015). https://doi.org/10.1111/jace.13522
  71. F. Razaei, A. Mosca, P. Webley, J. Hedlund, and P. Xiao, "Comparison of Traditional and Structured Adsorbents for $CO_2$ Separation by Vacuum-Swing Adsorption," Ind. Eng. Chem. Res., 49 [10] 4832-41 (2010). https://doi.org/10.1021/ie9016545
  72. A. Corma, "From Microporous to Mesoporous Molecular Sieve Materials and their Use in Catalysis," Chem. Rev., 97 [6] 2373-420 (1997). https://doi.org/10.1021/cr960406n
  73. K. Schwartzwalder, "Method of Making Porous Ceramic Articles"; U.S. Patent 3,090,094, 1961.
  74. E. Gregorova and W. Pabst, "Process Control and Optimized Preparation of Porous Alumina Ceramics by Starch Consolidation Casting," J. Eur. Ceram. Soc., 31 [12] 2073-81 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.018
  75. H. Yangcheng, Characterization of Normal and Waxy Corn Starch for Bioethanol Production, Master Thesis, Iowa State University, Iowa, 2012.
  76. F. A. Almeida, E. C. Botelho, F. C. L. Melo, T. M. B. Campos, and G. Thim, "Influence of Cassava Starch Content and Sintering Temperature on the Alumina Consolidation Technique," J. Eur. Ceram. Soc., 29 [9] 1587-94 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.10.006
  77. J. Tsubaki, M. Kato, M. Miyazawa, T. Kuma, and H. Mori, "The Effects of the Concentration of a Polymer Dispersant on Apparent Viscosity and Sedimentation Behavior of Dense Slurries," Chem. Eng. Sci., 56 [9] 3021-26 (2001). https://doi.org/10.1016/S0009-2509(00)00485-1
  78. A. Diaz and S. Hampshire, "Characterisation of Porous Silicon Nitride Materials Produced with Starch," J. Eur. Ceram. Soc., 24 [2] 413-19 (2004). https://doi.org/10.1016/S0955-2219(03)00212-7
  79. J. H. Eom, Y. W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 [3] 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
  80. L. M. Sheppard, "Porous Ceramics: Processing and Applications," Ceram. Trans., 31 3-23 (1992).
  81. P. Colombo, C. V. Ahmetoglu, and S. Costacurta, "Fabrication of Ceramic Components with Hierarchical Porosity," J. Mater. Sci., 45 [20] 5425-55 (2010). https://doi.org/10.1007/s10853-010-4708-9
  82. B. V. M. Kumar and Y. W. Kim, "Processing of Polysiloxane-Derived Porous Ceramics: A Review," Sci. Technol. Adv. Mater., 11 044303 (2010). https://doi.org/10.1088/1468-6996/11/4/044303
  83. T. Ohji and M. Fukushima, "Macro-Porous Ceramics: Processing and Properties," Int. Mater. Rev., 57 [2] 115-31 (2012). https://doi.org/10.1179/1743280411Y.0000000006
  84. P. Nguyen and C. Pham, "Innovative Porous SiC-based Materials: From Nanoscopic Understandings to Tunable Carriers Serving Catalytic Needs," Appl. Catal. A, 391 [1] 443-54 (2011). https://doi.org/10.1016/j.apcata.2010.07.054
  85. I. Nettleship, "Applications of Porous Ceramics," Key Eng. Mater., 122 305-24 (1996). https://doi.org/10.4028/www.scientific.net/KEM.122-124.305
  86. T. H. Yoon, H. J. Lee, J. Yan, and D. P. Kim, "Fabrication of SiC-based Ceramic Microstructures from Preceramic Polymers with Sacrificial Templates and Lithographic Techniques-A Review," J. Ceram. Soc. Jpn., 114 [6] (2006).
  87. J. F. Poco, J. H. S. Jr., and L. W. Hrubesh, "Synthesis of High Porosity, Monolithic Alumina Aerogels," J. Non-Cryst. Solids, 283 [1-3] 57-63 (2001).
  88. V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano Lopez, and J. Martinez-Fernandez, "Precursor Selection and its Role in the Mechanical Properties of Porous SiC Derived from Wood," Mater. Sci. Eng. A, 428 [1] 225-32 (2006). https://doi.org/10.1016/j.msea.2006.05.033
  89. P. Greil, "Advanced Engineering Ceramics," Adv. Mater., 14 [10] 709-16 (2002). https://doi.org/10.1002/1521-4095(20020517)14:10<709::AID-ADMA709>3.0.CO;2-9
  90. F. Schuth, "Engineered Porous Catalytic Materlals," Annu. Rev. Mater. Res., 35 [1] 209-38 (2005). https://doi.org/10.1146/annurev.matsci.35.012704.142050
  91. K. Ishizaki, S. Komarnei, and M. Nanko, Porous Materials: Process Technology and Applications; Kluwer Academic Publishers, Boston, 1998.
  92. R. Mouazer, I. Thijs, S. Mullens, and J. Luyten, "SiC Foams Produced by Gel Casting: Synthesis and Characterization," Adv. Eng. Mater., 6 [5] 340-43 (2004). https://doi.org/10.1002/adem.200400009
  93. S. Barg, C. Soltmann, M. Andrade, D. Koch, and G. Grathwohl, "Cellular Ceramics by Direct Foaming of Emulsified Ceramic Powder Suspensions," J. Am. Ceram. Soc., 91 [9] 2823-29 (2008). https://doi.org/10.1111/j.1551-2916.2008.02553.x
  94. D. Megias-Alguacil, E. Tervoort, C. Cattin, and L. J. Gauckler, "Contact Angle and Adsorption Behavior of Carboxylic Acids on Alpha-$Al_2O_3$ Surfaces," J. Colloid Interface Sci., 353 [2] 512-18 (2011). https://doi.org/10.1016/j.jcis.2010.09.087
  95. W. Y. Jang, J. G. Park, B. Basnet, K. T. Woo, I. S. Han, and I. J. Kim, "Highly Porous SiC Ceramics from Particle-Stabilized Suspension," J. Aust. Ceram. Soc., 53 [2] 657-65 (2017). https://doi.org/10.1007/s41779-017-0077-z
  96. S. Bhaskar, J. G. Park, I. J. Kim, B. H. Kang, and T. Y. Lim, "$ZrTiO_4$ Porous Ceramics Fabricated from Particle-Stabilized Wet Foam by Direct Foaming," J. Korean Phys. Soc., 68 [1] 77-82 (2016). https://doi.org/10.3938/jkps.68.77
  97. N. Sarkar, K. S. Lee, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Mechanical and Thermal Properties of Highly Porous $Al_2TiO_5$-Mullite Ceramics," Ceram. Int., 42 [2] 3548-55 (2016). https://doi.org/10.1016/j.ceramint.2015.11.002
  98. S. Bhaskar, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Effect of Surfactant on Adsorption Free Energy and Laplace Pressure of Wet Foam Stability to Porous Ceramics," J. Ceram. Proc. Res., 16 [1] 1-4 (2015). https://doi.org/10.36410/JCPR.2015.16.1.1
  99. C. R. Rambo and H. Sieber, "Novel Synthetic Route to Biomorphic $Al_2O_3$ Ceramics," Adv. Mater., 17 [8] 1088-91 (2005). https://doi.org/10.1002/adma.200401049
  100. T. Isobe, Y. Kameshima, A. Nakajima, K. Okada, and Y. Hotta, "Gas Permeability and Mechanical Properties of Porous Alumina Ceramics with Unidirectionally Aligned Pores," J. Eur. Ceram. Soc., 27 [1] 53-9 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.02.030
  101. E. C. Hammel, O. L. R. Ighodaro, and O. I. Okoli, "Processing and Properties of Advanced Porous Ceramics: An Application Based Review," Ceram. Int., 40 [10, Part A] 15351-70 (2014). https://doi.org/10.1016/j.ceramint.2014.06.095
  102. C. Chuanuwatanakul, C. Tallon, D. E. Dunstan, and G. V. Franks, "Producing Large Complex-Shaped Ceramic Particle Stabilized Foams," J. Am. Ceram. Soc., 96 [5] 1407-13 (2013). https://doi.org/10.1111/jace.12294
  103. S. Bhaskar, D. N. Seo, J. G. Park, G. H. Cho, B. H. Kang, T. Y. Lim, and I. J. Kim, "$Al_2O_3-TiO_2$ Porous Ceramics from Particle-Stabilized Wet Foam by Direct Foaming," J. Ceram. Process. Res., 16 [5] 643-47 (2015). https://doi.org/10.36410/JCPR.2015.16.5.643
  104. N. Sarkar, J. G. Park, D. N. Seo, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Influence of Amphiphile on Foam Stability of $Al_2O_3-SiO_2$ Colloidal Suspension to Porous Ceramics," J. Ceram. Process. Res., 16 [4] 392-96 (2015). https://doi.org/10.36410/JCPR.2015.16.4.392
  105. A. Stocco, W. Drenckhan, E. Rio, D. Langevin, and B. P. Binks, "Particle-Stabilised Foams: An Interfacial Study," Soft Matter, 5 [11] 2215-22 (2009). https://doi.org/10.1039/b901180c
  106. B. S. Murray and R. Ettelaie, "Foam Stability: Proteins and Nanoparticles," Curr. Opin. Colloid Interface Sci., 9 [5] 314-20 (2004). https://doi.org/10.1016/j.cocis.2004.09.004
  107. W. Zhao, S. Bhaskar, J. G. Park, S. Y. Kim, I. S. Han, and I. J. Kim, "Particle-Stabilized Wet Foams to porous Ceramics by Direct Foaming," J. Ceram. Process. Res., 15 [6] 503-7 (2014). https://doi.org/10.36410/JCPR.2014.15.6.503
  108. A. Pokhrel, J. G. Park, W. Zhao, and I. J. Kim, "Functional Porous Ceramics Using Amphiphilic Molecule," J. Ceram. Process Res., 13 [4] 420-24 (2012). https://doi.org/10.36410/JCPR.2012.13.4.420
  109. I. Lesov, S. Tcholakova, and N. Denkov, "Factors Controlling the Formation and Stability of Foams Used as Precursors of Porous Materials," J. Colloid Interface Sci., 426 9-21 (2014). https://doi.org/10.1016/j.jcis.2014.03.067
  110. A. Pokhrel, D. N. Seo, S. T. Lee, and I. J. Kim, "Processing of Porous Ceramics by Direct Foaming: A Review," J. Korean Ceram. Soc, 50 [2] 93-100 (2013). https://doi.org/10.4191/kcers.2013.50.2.093
  111. B. J. Briscoe, A. U. Khan, and P. F. Luckham, "Optimising the Dispersion on an Alumina Suspension Using Commercial Polyvalent Electrolyte Dispersants," J. Eur. Ceram. Soc., 18 [14] 2141-47 (1998). https://doi.org/10.1016/S0955-2219(98)00147-2
  112. X.-L. Wei, N. Li, W. J. Yi, L.-J. Li, and Z.-S. Chao, "High Performance Super-Hydrophobic $ZrO_2-SiO_2$ Porous Ceramics Coating with Flower-like $CeO_2$ Micro/Nano-Structure," Surf. Coat. Technol., 325 565-71 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.004
  113. M. S. Nasser and A. E. James, "The Effect of Electrolyte Concentration and pH on the Flocculation and Rheological Behavior of Kaolinite Suspensions," J. Eng. Sci. Technol., 4 [4] 430-46 (2009).
  114. S. Dhara and P. Bhargava, "Influence of Slurry Characteristics on Porosity and Mechanical Properties of Alumina Foams," Int. J. Appl. Ceram. Technol., 3 [5] 382-92 (2006). https://doi.org/10.1111/j.1744-7402.2006.02098.x
  115. Q. Zhang, W. Li, M. Gu, and Y. Jin, "Dispersion and Rheological Properties of Concentrated Silicon Aqueous Suspension," Powder Technol., 161 [2] 130-34 (2006). https://doi.org/10.1016/j.powtec.2005.10.005
  116. N. Demirkol and A. Capoglu, "Rheological and Green Strength Behaviour of Low-Clay Translucent Whiteware Slurries with an Acrylic Type Emulsion Binder Addition"; pp. 434-38 in Proceedings of the European Ceramic Society for 10th International Conference and Exhibition of the European Ceramic Society. Berlin, Germany, 2007.
  117. M. V. A. Umaran and R. L. Menchavez, "Aqueous Dispersion of Red Clay-based Ceramic Powder with the Addition of Starch," Mater. Res., 16 375-84 (2013). https://doi.org/10.1590/S1516-14392013005000002
  118. D. Sharma and A. Mukherjee, "Essential Parameters Responsible for Rheological Assessment of Concentrated Dispersion:-A Comprehensive Review," J. Ceram. Process. Res., 16 [6] 690-704 (2015). https://doi.org/10.36410/JCPR.2015.16.6.690
  119. H. Sarraf and J. Havrda, "Rheological Behavior of Concentrated Alumina Suspension: Effect of Electrosteric Stabilization," Ceram.-Silik., 51 [3] 147-52 (2007).
  120. Y.-J. Shin, C.-C. Su, and Y.-H. Shen, "Dispersion of Aqueous Nano-Sized Alumina Suspensions Using Cationic Polyelectrolyte," Mater. Res. Bull., 41 [10] 1964-71 (2006). https://doi.org/10.1016/j.materresbull.2006.01.032
  121. J. T. Muth, P. G. Dixon, L. Woish, L. J. Gibson, and J. A. Lewis, "Architected Cellular Ceramics with Tailored Stiffness via Direct Foam Writing," PNAS, 114 [8] 1832-7 (2017). https://doi.org/10.1073/pnas.1616769114
  122. A. R. Studart, V. C. Pandolfelli, E. Tervoort and L. J. Gauckler, "Selection of Dispersants for High-Alumina Zero-Cement Refractory Castables," J. Eur. Ceram. Soc., 23 [7] 997-1004 (2003). https://doi.org/10.1016/S0955-2219(02)00275-3
  123. S. M. Olhero and J. M. F. Ferreira, "Influence of Particle Size Distribution on Rheology and Particle Packing of Silica-based Suspensions," Powder Technol., 139 [1] 69-75 (2004). https://doi.org/10.1016/j.powtec.2003.10.004
  124. A. Mukherjee, R. Khan, B. Bera and H. S. Maiti, "I: Dispersibility of Robust Alumina Particles in Non-Aqueous Solution," Ceram. Int., 34 [3] 523-29 (2008). https://doi.org/10.1016/j.ceramint.2006.11.009
  125. R. Moreno and B. Ferrari, "Effect of the Slurry Properties on the Homogeneity of Alumina Deposits Obtained by Aqueous Electrophoretic Deposition," Mater. Res. Bull., 35 [6] 887-97 (2000). https://doi.org/10.1016/S0025-5408(00)00288-9
  126. W. Y. Jang, J. G. Park, I. S. Han, H. M. Lim, T. Y. Lim, and I. J. Kim, "Effect of Surfactant on Wet Foam Stability to SiC Porous Ceramics," J. Ceram. Process. Res., 18 [12] 887-93 (2017). https://doi.org/10.36410/JCPR.2017.18.12.887
  127. P. A. Smith and R. A. Haber, "Effect of Particle Packing on the Filtration and Rheology Behavior of Extended Size Distribution Alumina Suspensions," J. Am. Ceram. Soc., 78 [7] 1737-44 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08883.x
  128. W. Y. Jang, B. Basnet, J. G. Park, H. M. Lim, T. Y. Lim, and I. J. Kim, "Effect of Albumin Content on the Rheological Properties and Wet Foam Stability of Porous Ceramics," J. Ceram. Process. Res., 19 [4] 296-301 (2018). https://doi.org/10.36410/JCPR.2018.19.4.296
  129. A. J. Wilson, Foams: Physics, Chemistry, and Structure; Springer Verlag, Berlin, 1989.
  130. M. Davis, "Basic Physics of Foam Stability and Collapse," NAVAIR Naval Air Systems Command Naval Fuels & Lubricants CFT Rept. No. 441/21-009, June 2012.
  131. P. R. Garret, Defoaming: Theory and Industrial Applications; Marcel Dekker, New York, 1993.
  132. D. Weaire and S. Hutzler, The Physics of Foams; Oxford University Press, New York, 1999.
  133. D. Douglas, "The Physics of Foam-Introduction," pp. 1-26 in Physics of Soft Condensed Matter Lecture Series, Boulder, CO, 2002.
  134. P. C. Himenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry; 3th Edition, Revised and Expanded, Dekker, New York, 1997.
  135. C. Tuck and J. R. G. Evans, "Porous Ceramics Prepared From Aqueous Foams," J. Mater. Sci. Lett., 18 [13] 1003-5 (1999). https://doi.org/10.1023/A:1006665829967
  136. A. R. Studart, R. Libanori, A. Moreno, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Unifying Model for the Electrokinetic and Phase Behavior of Aqueous Suspensions Containing Short and Long Amphiphiles," Langmuir, 27 [19] 11835-44 (2011). https://doi.org/10.1021/la202384b
  137. E. C. Hammel, O. L. R. Ighodaro, and O. I. Okoli, "Processing and Properties of Advanced Porous Ceramics: An Application Based Review," Ceram. Int., 40 [10] 15351-70 (2014). https://doi.org/10.1016/j.ceramint.2014.06.095
  138. A. Pokhrel, J. Gyu Park, J. Sic Nam, D. Soo, and I. J. Kim, "Stabilization of Wet Foams for Porous Ceramics Using Amphiphilic Particles," J. Korean Ceram. Soc., 48 [5] 463-66 (2011). https://doi.org/10.4191/kcers.2011.48.5.463
  139. Y. Q. Sun and T. Gao, "The Optimum Wetting Angle for the Stabilization of Liquid-Metal Foams by Ceramic Particles: Experimental Simulations," Metall. Mater. Trans. A, 33 [10] 3285-92 (2002). https://doi.org/10.1007/s11661-002-0315-y
  140. N. Sarkar, J. G. Park, S. Mazumder, and I. J. Kim, "Stabilization of Nano-Particles in Concentrated Colloidal Suspension to Porous Ceramics," J. Ceram. Process. Res., 16 [2] 272-25 (2015). https://doi.org/10.36410/JCPR.2015.16.2.272
  141. G. Kaptay, "On the Equation of the Maximum Capillary Pressure Induced by Solid Particles to Stabilize Emulsions and Foams and on the Emulsion Stability Diagrams," Colloids Surf., A, 282-283 387-401 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.021
  142. G. Kaptay, "Interfacial Criteria for Stabilization of Liquid Foams by Solid Particles," Colloids Surf., A, 230 [1] 67-80 (2003). https://doi.org/10.1016/j.colsurfa.2003.09.016
  143. L. A. Pugnaloni, E. Dickinson, R. Ettelaie, A. R. Mackie, and P. J. Wilde, "Competitive Adsorption of Proteins and Low-Molecular-Weight Surfactants: Computer Simulation and Microscopic Imaging," Adv. Colloid Interface Sci., 107 [1] 27-49 (2004). https://doi.org/10.1016/j.cis.2003.08.003
  144. S. Bhaskar, J. G. Park, I. S. Han, M. J. Lee, T. Y. Lim, and I. J. Kim, "Particle Stabilized Wet Foam to Prepare $SiO_2$-SiC Porous Ceramics by Colloidal Processing," J. Korean Ceram. Soc., 52 [6] 455-61 (2015). https://doi.org/10.4191/kcers.2015.52.6.455
  145. T. S. Horozov, "Foams and Foam Films Stabilised by Solid Particles," Curr. Opin. Colloid Interface Sci., 13 [3] 134-40 (2008). https://doi.org/10.1016/j.cocis.2007.11.009
  146. A. R. Studart, J. Studer, L. Xu, K. Yoon, H. C. Shum, and D. A. Weitz, "Hierarchical Porous Materials Made by Drying Complex Suspensions," Langmuir, 27 [3] 955-64 (2011). https://doi.org/10.1021/la103995g
  147. F. Schuth and W. Schmidt, "Microporous and Mesoporous Materials," Adv. Mater., 14 [9] 629-38 (2002). https://doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
  148. J. C. H. Wong, E. Tervoort, S. Busato, U. T. Gonzenbach, A. R. Studart, P. Ermanni, and L. J. Gauckler, "Designing Macroporous Polymers from Particle-Stabilized Foams," J. Mater. Chem., 20 [27] 5628-40 (2010). https://doi.org/10.1039/c0jm00655f
  149. P. Sepulveda, "Gelcasting Foams for Porous Ceramics," Am. Ceram. Soc. Bull., 76 [10] 61-5 (1997).
  150. I. H. Arita, V. M. Castano, and D. S. Wilkinson, "Synthesis and Processing of Hydroxyapatite Ceramic Tapes with Controlled Porosity," J. Mater. Sci.: Mater. Med., 6 [1] 19-23 (1995). https://doi.org/10.1007/BF00121241
  151. A. Pokhrel, W. Zhao, and I. J. Kim, "Wet Foam Stabilized by Amphiphiles to Tailor the Microstructure of Porous Ceramics," Key Eng. Mater., 512 288-92 (2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.288
  152. N. Sarkar and I. J. Kim, "Porous Ceramics," in Advanced Ceramic Processing, Ed. by A. M. A. Mohamed, IntechOpen, London, 2015.
  153. I. Y. Guzman, "Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review)," Glass Ceram., 60 [9] 280-83 (2003). https://doi.org/10.1023/b:glac.0000008227.85944.64
  154. Z. Bazelova, L. Pach, J. Lokaj, and V. Kovar, "Properties of $Al_2O_3$ Foams Optimized by Factorial Design," Ceramics-Silik., 55 [3] 240-45 (2011).
  155. X. Deng, J. Wang, S. Du, F. Li, L. Lu, and H. Zhang, "Fabrication of Porous Ceramics by Direct Foaming," Interceram. Int. Ceram. Rev., 63 [3] 104-8 (2014). https://doi.org/10.1007/bf03401041
  156. A. Korjakins, L. Upeniece, and D. Bajare, "High Efficiency Porous Ceramics with Controllable Porosity"; pp. 5-10 in Proceedings of the CIVIL ENGINEERING '13 for 4th International Scientific Conference. Jelgava, Latvia 2013.
  157. W. Y. Jang, D. N. Seo, J. G. Park, H. T. Kim, S. M. Lee, S. Y. Kim, and I. J. Kim, "Highly-Closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming," J. Korean Ceram. Soc, 53 [6] 604-9 (2016). https://doi.org/10.4191/kcers.2016.53.6.604
  158. S. Bhaskar, G. H. Cho, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Micro Porous $SiO_2$-SiC Ceramics from Particle Stabilized Foams by Direct Foaming," J. Ceram. Soc. Jpn., 123 [1437] 378-82 (2015). https://doi.org/10.2109/jcersj2.123.378
  159. R. Ahmad, J.-H. Ha, and I.-H. Song, "Processing Methods for the Preparation of Porous Ceramics," J. Korean Powd. Metall. Inst., 21 [5] 389-98 (2014). https://doi.org/10.4150/KPMI.2014.21.5.389
  160. E. P. Santos, C. V. Santilli, and S. H. Pulcinelli, "Effect of Aging on the Stability of Ceramic Foams Prepared by Thermostimulated Sol-Gel Process," J. Sol-Gel Sci. Technol., 26 [1] 165-69 (2003). https://doi.org/10.1023/A:1020726426981
  161. P. Nguyen and C. Pham, "Innovative Porous SiC-based Materials: From Nanoscopic Understandings to Tunable Carriers Serving Catalytic Needs," Appl. Catal. A, 391 [1] 443-54 (2011). https://doi.org/10.1016/j.apcata.2010.07.054
  162. G. Liu, P. Dai, Y. Wang, J. Yang, and G. Qiao, "Fabrication of Pure SiC Ceramic Foams Using $SiO_2$ as a Foaming Agent via High-Temperature Recrystallization," Mater. Sci. Eng. A, 528 [6] 2418-22 (2011). https://doi.org/10.1016/j.msea.2010.12.063
  163. M. Zorko, S. Novak, and M. Gaberscek, "Fast Fabrication of Mesoporous SiC with High and Highly Ordered Porosity from Ordered Silica Templates," J. Ceram. Process. Res., 12 [6] 654-59 (2011). https://doi.org/10.36410/JCPR.2011.12.6.654
  164. F. Leal-Calderon, "Emulsified Lipids: Formulation and Control of End-Use Properties," OCL, 19 [2] 111-9 (2012). https://doi.org/10.1051/ocl.2012.0438

Cited by

  1. Core-shell-structured Fe3O4 nanocomposite particles for high-performance/stable magnetorheological fluids: preparation and characteristics vol.57, pp.6, 2019, https://doi.org/10.1007/s43207-020-00070-9
  2. Reduction of structural hierarchy translates into variable influence on the performance of boron nitride aerogel vol.24, pp.3, 2019, https://doi.org/10.1016/j.isci.2021.102251
  3. Properties of Surface Heating Textile for Functional Warm Clothing Based on a Composite Heating Element with a Positive Temperature Coefficient vol.11, pp.4, 2021, https://doi.org/10.3390/nano11040904
  4. Mechanical properties of carbon fiber-reinforced Al2O3 porous ceramics vol.58, pp.3, 2021, https://doi.org/10.1007/s43207-020-00105-1
  5. Synthesis and characterization of low-cost hierarchical porous silica by nanoemulsion templating: influence of nanoemulsion volume and hydrodynamic diameter vol.99, pp.1, 2019, https://doi.org/10.1007/s10971-021-05543-9
  6. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration vol.5, pp.9, 2019, https://doi.org/10.3390/jcs5090227