DOI QR코드

DOI QR Code

Carbon Nitrides 나노구조체를 이용한 CO2 포집 연구의 최신동향

A Review on Nanostructured Carbon Nitrides for CO2 Capture

  • 하성진 (경남대학교 나노신소재공학과) ;
  • 이동기 (경남대학교 나노신소재공학과) ;
  • 김문희 (경남대학교 나노신소재공학과) ;
  • 박대환 (경남대학교 나노신소재공학과)
  • Ha, Seongjin (Department of Nano Materials Science and Engineering, Kyungnam University) ;
  • Lee, Dongki (Department of Nano Materials Science and Engineering, Kyungnam University) ;
  • Jin, Wenji (Department of Nano Materials Science and Engineering, Kyungnam University) ;
  • Park, Dae-Hwan (Department of Nano Materials Science and Engineering, Kyungnam University)
  • 투고 : 2019.09.11
  • 심사 : 2019.09.18
  • 발행 : 2019.09.30

초록

Carbon nitride has drawn broad interdisciplinary attention in diverse fields such as catalyst, energy storage, gas adsorption, biomedical sensing and even imaging. Intensive studies on carbon dioxide (CO2) capture using carbon nitride materials with various nanostructures have been reported since it is needed to actively remove CO2 from the atmosphere against climate change. This is mainly due to its tunable structural features, excellent physicochemical properties, and basic surface functionalities based on the presence of a large number of -NH or -NH2 groups so that the nanostructured carbon nitrides are considered as suitable materials for CO2 capture for future utilization as well. In this review, we summarize and highlight the recent progress in synthesis strategies of carbon nitride nanomaterials. Their superior CO2 adsorption capabilities are also discussed with the structural and textural features. An outlook on possible further advances in carbon nitride is also included.

키워드

참고문헌

  1. J. P. Smol, "Climate Change: A planet in flux," Nature, 483 12-15 (2012).
  2. L. Espinal, D. L. Poster, W. Wong-Ng, A. J. Allen, and M. L. Green, "Measurement, Standards, and Data Needs for $CO_2$ Capture Materials - A Critical Review," Environ. Sci. Technol., 47 [21] 11960-11975 (2013). https://doi.org/10.1021/es402622q
  3. R. M. Cuellar-Franca, A. Azapagic, "Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts," J $CO_2$ UTIL, 9 82-102 (2015). https://doi.org/10.1016/j.jcou.2014.12.001
  4. K. S. Lakhi, D. H. Park, K. A. Bahily, W. Cha, B. Viswanathan, J. H. Choy, and A. Vinu, "Mesoporous carbon nitrides: synthesis, functionalization, and applications," Chem. Soc. Rev., 46 [1] 72-101 (2017). https://doi.org/10.1039/C6CS00532B
  5. A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, and Y. Bando, "Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride," Adv. Mater., 17 [13] 1648-1652 (2005). https://doi.org/10.1002/adma.200401643
  6. A. Vinu, "Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content," Adv. Funct. Mater., 18 [5] 816-827 (2008). https://doi.org/10.1002/adfm.200700783
  7. C. Aannd, S. V. Priya, G. Lawrence, G. P. Mane, D. S. Dhawale, K. S. Presad, V. V. Balasubramanian, M. A. Wahab, A. Vinu, "Transesterification of ethylacetoacetate catalysed by metal free mesoporous carbon nitride," Catal. Today., 204 164-169 (2013). https://doi.org/10.1016/j.cattod.2012.07.025
  8. A. Y. Liu, M. L. Cohen, "Prediction of New Low Compressibility Solids," Science, 245 [4920] 841-842 (1989). https://doi.org/10.1126/science.245.4920.841
  9. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, "A metal-free polymeric photocatalyst for hydrogen production from water under visible light," Nat. Mater., 8 76-80 (2009). https://doi.org/10.1038/nmat2317
  10. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, and S. Z. Qiao, "Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis," Energy Environ. Sci., 5 6717-6731 (2012). https://doi.org/10.1039/c2ee03479d
  11. Y. Zheng, Y. Jiao, M. Jaroniec, Y. Jin, and Z. Qiao, "Nanostructured Metal-Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction," Small, 8 [23] 3550-3566 (2012). https://doi.org/10.1002/smll.201200861
  12. G. Dong, K. Zhao, and L. Zhang, "Carbon self-doping induced high electronic conductivity and photoreactivity of g-$C_3N_4$," Chem. Commun., 48 6178-6180 (2012). https://doi.org/10.1039/c2cc32181e
  13. G. Liu, P. Liu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, and H. M. Cheng, "Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic $C_3N_4$," J. Am. Chem. Soc., 132 [33] 11642-11648 (2010). https://doi.org/10.1021/ja103798k
  14. F. Goettmann, A. Fisher, M. Antonietti, and A. Thomas, "Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel-Crafts Reaction of Benzene," Angew. Chem. Int. Ed., 45 4467-4471 (2006). https://doi.org/10.1002/anie.200600412
  15. J. Xu, H. T. Wu, X. Wang, B. Xue, Y. X. Li, and Y. Cao, "A new and environmentally benign precursor for the synthesis of mesoporous g-$C_3N_4$ with tunable surface area," Phys. Chem. Chem. Phys., 15 4510-4517 (2013). https://doi.org/10.1039/c3cp44402c
  16. J. Xu, T. Chen, X. Wang, B. Xue, and Y. X. Li, "Preparation of mesoporous graphitic carbon nitride using hexamethylene tetramine as a new precursor and catalytic application in the transesterification of ${\beta}$-keto esters," Catal. Sci. Technol., 4 2126-2133 (2014). https://doi.org/10.1039/c4cy00183d
  17. Q. F. Deng, L. Liu, X. Z. Lin, G. Du, Y. Liu, Z. Y. Yuan, "Synthesis and $CO_2$ capture properties of mesoporous carbon nitride materials," Chem. Eng. J., 203 63-70 (2012). https://doi.org/10.1016/j.cej.2012.06.124
  18. Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, "Facile Synthesis of Porous Carbon Nitride Spheres with Hierarchical Three-Dimensional Mesostructures for $CO_2$ Capture," Nano Res., 3 [9] 632-642 (2010). https://doi.org/10.1007/s12274-010-0023-7
  19. K. S. Lakhi, W. S. Cha, S. Joseph, B. J. Wood, S. S. Aldeyab, G. Lawrence, J. H. Choy, A. Vinu, "Cage type mesoporous carbon nitride with large mesopores for $CO_2$ capture," Catal. Today., 243 209-217 (2015). https://doi.org/10.1016/j.cattod.2014.08.036
  20. Y. T. Oh, V. D. Le, U. N. Maiti, J. O. Hwang, W. J. Park, J. W. Lim, K. E. Lee, Y. S. Bae, Y. H. Kim, and S. O. Kim, "Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride," ACS Nano, 9 [9] 9148-9157 (2015). https://doi.org/10.1021/acsnano.5b03400
  21. K. S. Lakhi, A. V. Baskar, J. S. M. Zaidi, S. S. A. Deyab, M. E. Newehy, J. H. Choy, and A. Vinu, "Morphological Control of Mesoporous CN Based Hybrid Materials and their Excellent $CO_2$ Adsorption Capacity," RSC Adv., 5 40183-40192 (2015). https://doi.org/10.1039/C5RA04730G
  22. K. S. Lakhi, D. H. Park, S. Joseph, S. N. Talapaneni, U. Ravon, K. A. Bahily, and A. Vinu, "Effect of Heat Treatment on the Nitrogen Content and Its Role on the $CO_2$ Adsorption Capacity of Highly Ordered Mesoporous Carbon Nitride," Chem Asian J., 12 [5] 595-604 (2017). https://doi.org/10.1002/asia.201601707
  23. D. H. Park, K. S. Lakhi, K. Ramadass, M. K. Kim, S. N. Talapaneni, S. Joseph, U. Ravon, K. A. Bahily, and A. Vinu, "Energy Efficient Synthesis of Ordered Mesoporous Carbon Nitrides with a High Nitrogen Content and Enhanced $CO_2$ Capture Capacity," Chem Eur J, 23 [45] 10753-10757 (2017). https://doi.org/10.1002/chem.201702566
  24. B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, and X. Chen, "Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient $CO_2$ capture, enhanced photocatalytic activity and product selectivity," ACS Appl. Mater. Interfaces, 10 [4] 4001-4009 (2018). https://doi.org/10.1021/acsami.7b17503
  25. S. Ghosh, S. Ramaprabhu, "High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for $CO_2$ capture," J $CO_2$ UTIL., 21 89-99 (2017).
  26. B. Tahir, M. Tahir, N. A. S. Amin, "Silver loaded protonated graphitic carbon nitride (Ag/pg-$C_3N_4$) nanosheets for stimulating $CO_2$ reduction to fuels via photocatalytic bi-reforming of methane," Applied Surface Science, 493 18-31 (2019). https://doi.org/10.1016/j.apsusc.2019.06.257
  27. K. S. Lakhi, D. H. Park, G. Singh, S. N. Talapaneni, U. Ravon, K. A. Bahily, and A. Vinu, "Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior $CO_2$ adsorption capacity," J. Mater. Chem. A., 5 16220-16230 (2017). https://doi.org/10.1039/C6TA10716H
  28. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramasay, K. S. W. Sing, and K. K. Unger, "Recommendations for the characterization of porous solids (Technical Report)," PURE APPL CHEM., 66 [8] 1739-1758 (1994). https://doi.org/10.1351/pac199466081739
  29. O. M. Yaghi, G. Li, H. Li, "Selective binding and removal of guests in a microporous metal-organic framework," Nature, 378 703-706 (1995). https://doi.org/10.1038/378703a0
  30. Y. Tao, H, Kanoh, L. Abrams, and K. Kaneko, "Mesopore-Modified Zeolites: Preparation, Characterization, and Applications," Chem. Rev., 106 896-910 (2006). https://doi.org/10.1021/cr040204o
  31. F. Tang, L. Li, and D. Chen, "Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery," Adv. Mater., 24 1504-1534 (2012). https://doi.org/10.1002/adma.201104763
  32. M. Ramdin, T. W. D. Loos, and T. J. H. Vlugt, "State-of-the-Art of $CO_2$ Capture with Ionic Liquids," Ind. Eng. Chem. Res., 51 [24] 8149-8177 (2012). https://doi.org/10.1021/ie3003705
  33. K. Behera, S. Pandey, A. Kadyan, and S. Pandey, "Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors," Sensors, 15 30487-30503 (2015). https://doi.org/10.3390/s151229813
  34. R. D. Richardson, E. J. Holland and B. K. Carpenter, "A renewable amine for photochemical reduction of $CO_2$," Nature Chemistry, 3 301-303 (2011). https://doi.org/10.1038/nchem.1000
  35. Y. Liao, S. W. Cao, Y. Yuan, Q. Gu, Z. Zhang, and C. Xue, "Efficient $CO_2$ Capture and Photoreduction by Amine-Functionalized $TiO_2$," Chem. Eur. J., 20 10220-10222 (2014). https://doi.org/10.1002/chem.201403321
  36. Y. Zhang, K. Fugane, T. Mori, L. Niu, and J. Ye, "Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis," J. Mater. Chem., 22 6575-6580 (2012) https://doi.org/10.1039/c2jm00044j