DOI QR코드

DOI QR Code

바이오 물질 분석을 위한 금속 나노입자를 이용한 SERS 분석 연구동향

A Review of SERS for Biomaterials Analysis Using Metal Nanoparticles

  • 장의순 (금오공과대학교 응용화학과)
  • Jang, Eue-Soon (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • 투고 : 2019.09.06
  • 심사 : 2019.09.10
  • 발행 : 2019.09.30

초록

Surface enhanced Raman scattering (SERS) was first discovered in 1974 by an unexpected Raman signal increase from Pyridine adsorbed on rough Ag electrode surfaces by the M. Fleishmann group. M. Moskovits group suggested that this phenomenon could be caused by surface plasmon resonance (SPR), which is a collective oscillation of free electrons at the surface of metal nanostructures by an external light source. After about 40 years, the SERS study has attracted great attention as a biomolecule analysis technology, and more than 2500 new papers and 500 review papers related to SERS topic have been published each year in recently. The advantages of biomaterials analysis using SERS are as follows; ① Molecular level analysis is possible based on unique fingerprint information of biomolecule, ② There is no photo-bleaching effect of the Raman reporters, allowing long-term monitoring of biomaterials compared to fluorescence microscopy, ③ SERS peak bandwidth is approximately 10 to 100 times narrower than fluorescence emission from organic phosphor or quantum dot, resulting in higher analysis accuracy, ④ Single excitation wavelength allows analysis of various biomaterials, ⑤ By utilizing near-infrared (NIR) SERS-activated nanostructures and NIR excitation lasers, auto-fluorescence noise in the visible wavelength range can be avoided from in vivo experiment and light damage in living cells can be minimized compared to visible lasers, ⑥ The weak Raman signal of the water molecule makes it easy to analyze biomaterials in aqueous solutions. For this reason, SERS is attracting attention as a next-generation non-invasive medical diagnostic device as well as substance analysis. In this review, the principles of SERS and various biomaterial analysis principles using SERS analysis will be introduced through recent research papers.

키워드

참고문헌

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., 26 [2] 163-166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1
  2. M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," J. Chem. Phys., 69 [9] 4159-4161 (1978). https://doi.org/10.1063/1.437095
  3. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys., 57 [3] 783-826 (1985). https://doi.org/10.1103/RevModPhys.57.783
  4. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, "Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength" J. Chem. Soc., Faraday Trans. 2, 75, 790-798(1979).
  5. Y. J. Chen, W. P. Chen, and E. Burstein, "Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals", Phys. Rev. Lett., 36 [20], 1207-1210 (1976). https://doi.org/10.1103/PhysRevLett.36.1207
  6. R. Dornhaus, R. E. Benner, R. K. Chang, and I. Chabay, "Surface plasmon contribution to SERS", Surf. Sci., 101 [1-3], 367-373 (1980). https://doi.org/10.1016/0039-6028(80)90632-9
  7. B. Pettinger, U. Wenning, and H. Wetzel, "Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes", Surf. Sci., 101[1-3], 409-416 (1980). https://doi.org/10.1016/0039-6028(80)90637-8
  8. J. C. Tsang, J. R. Kirtley, and T. N. Theis, "Surface plasmon polariton contributions to strokes emission from molecular monolayers on periodic Ag surfaces", Solid State Com., 35 [9], 667-670 (1980). https://doi.org/10.1016/0038-1098(80)90870-4
  9. J. I. Gersten, "The effect of surface roughness on surface enhanced Raman scattering", J. Chem. Phys., 72 [10], 5779-5780 (1980). https://doi.org/10.1063/1.439002
  10. J. Gersten, and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces", J. Chem. Phys., 73 [7], 3023-3037. https://doi.org/10.1063/1.440560
  11. S. L. McCall, and P. M. Platzman, "Raman scattering from chemisorbed molecules at surfaces", Phys. Rev. B: Condens. Matter Mater. Phys., 22 [4], 1660-1662. https://doi.org/10.1103/PhysRevB.22.1660
  12. M. Kerker, Acc. Chem. Res., "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids", 17 [8], 271-277 (1984). https://doi.org/10.1021/ar00104a002
  13. H. Metiu, and P. Das, "The electromagnetic theory of surface enhanced spectroscopy", Annu. Rev. Phys. Chem., 35, 507-536 (1984). https://doi.org/10.1146/annurev.pc.35.100184.002451
  14. G. C. Schatz, "Theoretical studies of surface enhanced Raman scattering", Acc. Chem. Res., 17 [10], 370-376 (1984). https://doi.org/10.1021/ar00106a005
  15. S. -Y. Ding, E. -M. You, Z. -Q. Tian, and M. Moskovits, "Electromagnetic theories of surface-enhanced Raman spectroscopy", Chem. Soc. Rev., 46, 4042-4076 (2017). https://doi.org/10.1039/C7CS00238F
  16. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface enhanced Raman scattering (SERS)", Phys. Rev. Lett., 78 [9], 1667-1670 (1997). https://doi.org/10.1103/PhysRevLett.78.1667
  17. S. Nie, and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering", Science, 275 [5303], 1102-1106 (1997). https://doi.org/10.1126/science.275.5303.1102
  18. D. S. Grubisha, R. J. Lipert,; H.-Y. Park, J. Driskell, and M. D. Porter, "Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels", Anal. Chem., 75 [21], 5936-5943 (2003). https://doi.org/10.1021/ac034356f
  19. X. Li, S. Ye, and X. Luo, "Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification" Chem. Com, 52 [67], 10269-10272 (2016). https://doi.org/10.1039/c6cc04391g
  20. C. Jiang, R. Liu, G. Han, and Z. Zhang, "A chemically reactive Raman probe for ultrasensitively monitoring and imaging the in vivo generation of femtomolar oxidative species as induced by antitumor drugs in living cells" Chem. Com., 49 [59], 6647-6649 (2013). https://doi.org/10.1039/c3cc43410a
  21. G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, "Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications", Appl. Spect., 65 [8], 825-837 (2011). https://doi.org/10.1366/11-06365
  22. S. Schluecker, "Surface-enhanced Raman spectroscopy: concepts and chemical applications", Angew. Chem., Int. Ed., 53 [19], 4756-4795 (2014). https://doi.org/10.1002/anie.201205748
  23. R. L. McCreery, "Raman spectroscopy for chemical analysis", Vol. 157, Ed. By J. D. Winefordner, John Wiley & Sons, Inc. Pub. Press., New York, NY, USA, 2000.
  24. D. A. Long, "The Raman effect : a unified treatment of the theory of Raman scattering by molecules", John Wiley & Sons, Inc. Pub. Press., New York, NY, USA, 2002.
  25. D. Tuschel, "Raman thermometry", Spectroscopy, 31 [12], 8-13 (2016).
  26. R. Meier, and B. Kip, "Determination of the local temperature at a sample during Raman experiments using stokes and anti-stokes Raman bands", Appl. Spect., 44 [4], 707-711 (1990). https://doi.org/10.1366/0003702904087325
  27. R. Meier, and B. Kip, "Determination of the local temperature at a sample during Raman experiments using stokes and anti-stokes Raman bands", Appl. Spect., 44 [4], 707-711 (2000). https://doi.org/10.1366/0003702904087325
  28. R. Aroca, "Surface-enhanced vibrational spectroscopy", John Wiley & Sons, Inc. Pub. Press., New York, NY, USA, 2006.
  29. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, "A review on surface-enhanced Raman scattering" Biosensors, 9 [57], 1-99 (2019).
  30. C. Zong, M. Xu, L. -J. Xu, T. Wei, X. Ma, X. -S. Zheng, R. Hu, and B. Ren, "Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges", Chem. Rev., 118 [10], 4946-4980 (2018). https://doi.org/10.1021/acs.chemrev.7b00668
  31. R. Pilot, R. Signorini, and L. Fabris, "Surface-enhanced Raman spectroscopy: principles, substrates, and applications" pp. 89-164 in Metal nanoparticles and clusters: Advances in synthesis, properties and applications, By F. L. Deepak Ed., Springer Press, Cham, Switzerland, 2018.
  32. P. G. Etchegoin, and E. C. Le Ru, "A perspective on single molecule SERS: Current status and future challenges" Phys. Chem. Chem. Phys., 10 [40], 6079-6089(2008). https://doi.org/10.1039/b809196j
  33. K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtulus, S. H. Lee, N. C. Lindquist, S. -H. Oh, and C. L. Haynes, "Recent progress in SERS biosensing" Phys. Chem. Chem. Phys. 13 [24], 11551-11567 (2011). https://doi.org/10.1039/c0cp01841d
  34. E. C. Le Ru, C. Galloway, P. G. Etchegoin, "On the connection between optical absorption/extinction and SERS enhancements", Phys. Chem. Chem. Phys., 8 [26], 3083-3087 (2006). https://doi.org/10.1039/b605292d
  35. A. Otto, "The "chemical" (electronic) contribution to surface-enhanced Raman scattering", J. Raman Spect., 36 [6-7], 497-509 (2005). https://doi.org/10.1002/jrs.1355
  36. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss", J. Phys. Chem. B, 106 [4], 853-860 (2002). https://doi.org/10.1021/jp013638l
  37. J. R. Lombardi, and R. L. Birke, "A unified view of surface-enhanced Raman scattering", Acc. Chem. Res., 42, 734-742 (2009). https://doi.org/10.1021/ar800249y
  38. S. -Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, "Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials", Nat. Rev. Mater., 1, 16021 (2016). https://doi.org/10.1038/natrevmats.2016.21
  39. E. C. Le Ru, and P. Etchegoin, "Principles of surface enhanced Raman spectroscopy", Elsevier Sci. Press, Amsterdam, The Netherlands, 2009.
  40. M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, "Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS", J. Am. Chem. Soc., 132 [1], 268-274 (2010). https://doi.org/10.1021/ja906954f
  41. M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, "Molecular plasmonics for nanoscale spectroscopy", Chem. Soc. Rev., 43 [4], 1230-1247 (2014). https://doi.org/10.1039/C3CS60187K
  42. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates", Nano Lett., 5 [8], 1569-1574 (2005). https://doi.org/10.1021/nl050928v
  43. J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, "Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes", Chem. Phys. Lett., 427 [1-3], 122-126 (2006). https://doi.org/10.1016/j.cplett.2006.05.111
  44. B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, and Y. Xia, "Synthesis and optical properties of silver nanobars and nanorice", Nano Lett., 7 [4], 1032-1036 (2007). https://doi.org/10.1021/nl070214f
  45. J. Fang, S. Liu, and Z. Li, "Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor", Biomaterials, 32 [21], 4877-4884 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.029
  46. M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. -Y. Li, and Y. Xia, "Surface-enhanced Raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver", J. Phys. Chem. A, 113 [16], 3932-3939 (2009). https://doi.org/10.1021/jp8101817
  47. J. -F. Li, Y. -J. Zhang, S. -Y. Ding, R. Panneerselvam, and Z. -Q. Tian, "Core-shell nanoparticle-enhanced Raman spectroscopy", Chem. Rev., 117 [7], 5002-5069 (2017). https://doi.org/10.1021/acs.chemrev.6b00596
  48. R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy", Chem. Phys. Lett., 318 [1-3], 131-136 (2000). https://doi.org/10.1016/S0009-2614(99)01451-7
  49. M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope", Appl. Phys. Lett., 76 [21], 3130-3132 (2000). https://doi.org/10.1063/1.126546
  50. N. Hayazawa, Y. Inouye, Z. Sekkat and S. Kawata, "Metallized tip amplification of near-field Raman scattering", Opt. Commun., 183 [1-4], 333-336 (2000). https://doi.org/10.1016/S0030-4018(00)00894-4
  51. B. Pettinger, G. Picardi, R. Schuster and G. Ertl, "Surface enhanced Raman spectroscopy: Towards single molecule spectroscopy", Electrochem., 68 [12], 942-949 (2000). https://doi.org/10.5796/electrochemistry.68.942
  52. L. Meng, T. X. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, "Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration", Optics Express, 23 [11], 13804-13813 (2015). https://doi.org/10.1364/OE.23.013804
  53. N. Kazemi-Zanjani, S. Vedraine, and F. Lagugne-Labarthet, "Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light", Optics Express, 21 [21], 25271-25276 (2013). https://doi.org/10.1364/OE.21.025271
  54. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy", Nature, 464 [7287], 392-395 (2010). https://doi.org/10.1038/nature08907
  55. J. -F. Li, S. -Y. Ding, Z. -L. Yang, M. -L. Bai, J. R. Anema, X. Wang, A. Wang, D. -Y. Wu, B. Ren, S. -M. Hou, T. Wandlowski, and Z. -Q. Tian, "Extraordinary Enhancement of Raman Scattering from Pyridine on Single Crystal Au and Pt Electrodes by Shell-Isolated Au Nanoparticles", J. Am. Chem. Soc., 133 [40], 15922-15925 (2011). https://doi.org/10.1021/ja2074533
  56. Y. -F. Huang, C. -Y. Li, I. Broadwell, J. -F. Li, D. -Y. Wu, B. Ren, and Z. -Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy of pyridine on smooth silver electrodes", Electrochim. Acta, 56 [28], 10652-10657 (2011). https://doi.org/10.1016/j.electacta.2011.04.107
  57. S. -Y. Ding, J. Yi, J. -F. Li, and Z.-Q. Tian, "A theoretical and experimental approach to shellisolated nanoparticle-enhanced Raman spectroscopy of single-crystal electrodes", Surf. Sci., 631, 73-80 (2015). https://doi.org/10.1016/j.susc.2014.07.019
  58. D. P. Butcher, S. P. Boulos, C. J. Murphy, R. C. Ambrosio, and A. A. Gewirth, "Face-dependent shell-isolated nanoparticle enhanced Raman spectroscopy of 2,2′-bipyridine on Au(100) and Au(111)", J. Phys. Chem. C, 116 [8], 5128-5140 (2012). https://doi.org/10.1021/jp211884s
  59. N. R. Honesty, and A. A. Gewirth, "Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly)", J. Raman Spectrosc., 43 [1], 46-50 (2012). https://doi.org/10.1002/jrs.2989
  60. A. V. Rudnev, A. Kuzume, Y. Fu, and T. Wandlowski, "CO oxidation on Pt(100): New insights based on combined voltammetric, microscopic and spectroscopic experiments", Electrochim. Acta, 133, 132-145 (2014). https://doi.org/10.1016/j.electacta.2014.04.034
  61. C. -Y. Li, J. -C. Dong, X. Jin, S. Chen, R. Panneerselvam, A. V. Rudnev, Z.-L. Yang, J.-F. Li, T. Wandlowski, and Z.-Q. Tian, "In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy", J. Am. Chem. Soc., 137 [24], 7648-7651 (2015). https://doi.org/10.1021/jacs.5b04670
  62. A. Bonifacio, S. Cervo, and V. Sergo, "Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications", Anal. Bioanal. Chem., 407 [27], 8265-8277 (2015). https://doi.org/10.1007/s00216-015-8697-z
  63. S. Ma, Q. Li, Y. Yin, J. Yang, and D. Liu, "Interference-free surface enhanced Raman scattering tags for single-cell molecular imaging with a high signal-to-background ratio", Small, 13 [15], 1603340 (2017). https://doi.org/10.1002/smll.201603340
  64. N. M. S. Sirimuthu, "Investigation of the stability of labelled nanoparticles for SE(R) RS measurements in cells" Chem. Com., 47 [14], 4099-4101 (2011). https://doi.org/10.1039/c0cc05723a
  65. Y. Yin, Q. Li, S. Ma, H. Liu, B. Dong, J. Yang, and D. Liu, "Prussian blue as a highly sensitive and background-free resonant Raman reporter", Anal. Chem., 89[], 1551-1557 (2017). https://doi.org/10.1021/acs.analchem.6b03521
  66. K. V. Kong, Z. Lam, W. D. Goh, W. K. Leong, and M. Olivo, "Metal carbonyl-gold nanoparticle conjugates for live-cell SERS imaging", Angew. Chem., Int. Ed., 51 [3], 9796-9799 (2012). https://doi.org/10.1002/anie.201204349
  67. Z. -L. Song, Z. Chen, X. Bian, L. -Y. Zhou, D. Ding, H. Liang, Y. -X. Zou, S. -S. Wang, L. Chen, C. Yang, X. -B. Zhang, and W. Tan, "Alkynefunctionalized superstable graphitic silver nanoparticles for Raman imaging", J. Am. Chem. Soc., 136 [39], 13558-13561 (2014). https://doi.org/10.1021/ja507368z
  68. S. Habuchi, and J. Hofkens, "Single-molecule surface-enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein EGFP", Surf. Enhanced Raman Scattering, 103, 297-312 (2006). https://doi.org/10.1007/3-540-33567-6_15
  69. K. Singhal and A. K. Kalkan, "Surface-enhanced Raman scattering captures conformational changes of single photoactive yellow protein molecules under photoexcitation", J. Am. Chem. Soc., 132 [2], 429-431 (2010). https://doi.org/10.1021/ja9028704
  70. H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering", Phys. Rev. Lett., 83 [21], 4357-4360 (1999). https://doi.org/10.1103/PhysRevLett.83.4357
  71. X. X. Han, G. G. Huang, B. Zhao and Y. Ozaki, "Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering", Anal. Chem., 81 [9], 3329-3333 (2009). https://doi.org/10.1021/ac900395x
  72. I. Bruzas, W. Lum, Z. Gorunmez, and L. Sagle, "Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond", Analyst, 143 [17], 3990-4008 (2018). https://doi.org/10.1039/c8an00606g
  73. A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, "Raman spectroscopy of proteins: a review", J. Raman Spect., 44 [8], 1061-1076 (2013). https://doi.org/10.1002/jrs.4335
  74. K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, "Raman spectroscopy of lipids: a review", J. Raman Spect., 46 [1], 4-20 (2015). https://doi.org/10.1002/jrs.4607
  75. T. Brule, H. Yockell-Lelievre, A. Bouhelier, J. Margueritat, L. Markey, A. Leray, A. Dereux, and E. Finot, "Spectral pointillism of enhanced Raman scattering for accessing structural and conformational information on single protein", J. Phys. Chem. C, 118 [1], 17975-17982 (2014). https://doi.org/10.1021/jp504395c
  76. T. Brule, A. Bouhelier, A. Dereux, and E. Finot, "Discrimination between single protein conformations using dynamic SERS", ACS Sens., 1 [6], 676-680 (2016). https://doi.org/10.1021/acssensors.6b00097
  77. L. -J. Xu, Z. -C. Lei, J. Li, C. Zong, C. J. Yang, and B. Ren, "Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity", J. Am. Chem. Soc., 137 [15], 5149-5154 (2015). https://doi.org/10.1021/jacs.5b01426
  78. L. -J. Xu, C. Zong, X. -S. Zheng, P. Hu, J. -M. Feng, and B. Ren, "Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles", Anal. Chem., 86 [4], 2238-2245 (2014). https://doi.org/10.1021/ac403974n
  79. L. Guerrini, Z. Krpetic, D. van Lierop, R. A. Alvarez-Puebla, and D. Graham, "Direct surface-enhanced Raman scattering analysis of DNA duplexes", Angew. Chem., Int. Ed., 54 [4], 1144-1148 (2015). https://doi.org/10.1002/anie.201408558
  80. E. Garcia-Rico, R. A. Alvarez-Puebla, and L. Guerrini, "Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications", Chem. Soc. Rev., 47 [13], 4909-4923, 2018. https://doi.org/10.1039/c7cs00809k
  81. E. Papadopoulou, and S. E. J. Bell, "Label-free detection of nanomolar unmodified single- and double-stranded DNA by using surface-enhanced Raman spectroscopy on Ag and Au colloids", Chem. - Eur. J., 18 [17], 5394-5400 (2012). https://doi.org/10.1002/chem.201103520
  82. Y. Yin, Q. Li, S. Ma, H. Liu, B. Dong, J. Yang, and D. Liu, "Prussian blue as a highly sensitive and background-free resonant Raman reporter", Anal. Chem., 89 [3], 1551-1557 (2017). https://doi.org/10.1021/acs.analchem.6b03521
  83. Y. Chen, J. -Q. Ren, X. -G. Zhang, D. -Y. Wu, A. -G. Shen, and J. -M. Hu, "Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging", Anal. Chem., 88 [12], 6115-6119 (2016). https://doi.org/10.1021/acs.analchem.6b01374
  84. D. Radziuk, R. Schuetz, A. Masic, and H. Moehwald, "Chemical imaging of live fibroblasts by SERS effective nanofilm", Phys. Chem. Chem. Phys., 16 [44], 24621-24634 (2014). https://doi.org/10.1039/c4cp04034a
  85. J. Ando, K. Fujita, N. I. Smith, and S. Kawata, "Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles", Nano Lett., 11 [12], 5344-5348 (2011). https://doi.org/10.1021/nl202877r
  86. C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, "Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy", PNAS, 106 [32], 13511-13516 (2009). https://doi.org/10.1073/pnas.0813327106
  87. Y. W. Wang, S. Kang, A. Khan, P. Q. Bao, and J. T. C. Liu, "In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles", Biomed. Opt. Express, 6 [10], 3714-3723 (2015). https://doi.org/10.1364/BOE.6.003714