References
- V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, "Graphene Based Materials: Past, Present and Future," Prog. Mater. Sci., 56 1178-271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
- W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," J. Am. Chem. Soc., 80 1339 (1958). https://doi.org/10.1021/ja01539a017
- L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Strom, S. Farris and R. T. Olsson, "Experimental Review: Chemical Reduction of Graphene Oxide(GO) to Reduced Graphene Oxide (rGO) by Aqueous Chemistry," Nanoscale, 9 9562-71 (2017). https://doi.org/10.1039/C7NR02943H
- D. H. Everett, "Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry," Pure Appl. Chem., 31 578-638 (1972). https://doi.org/10.1351/pac197231040577
- K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqu erol and T. Siemieniewska, "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984)," Pure Appl. Chem., 57 603-19 (1985). https://doi.org/10.1351/pac198557040603
- S. J. Gregg and K. S. W. Sing, "Adsorption, Surface Area, and Porosity," 2nd ed., Academic Press, New York, 1982.
- R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, 320 1308 (2008). https://doi.org/10.1126/science.1156965
- A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The Electronic Properties of Graphene," Rev. Mod. Phys., 81 109-62 (2009) https://doi.org/10.1103/RevModPhys.81.109
- H. Liu, Y. Liu and D. Zhu, "Chemical Doping of Graphene," J. Mater. Chem., 21 3335-45 (2011). https://doi.org/10.1039/c0jm02922j
- J . L. Vickery, A. J. Patil and S. Mann, "Fabrication of Graphene-Polymer Nanocomposites with Higher-Order Three-Dimensional Architectures," Adv. Mater., 21 2180-4 (2009). https://doi.org/10.1002/adma.200803606
- D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, "The Chemistry of Graphene Oxide," Chem. Soc. Rev., 39 228-40 (2010). https://doi.org/10.1039/B917103G
- H . P. Mungse, O. P. Sharma, H. Sugimura and O. P. Khatri, "Hydrothermal Deoxygenation of Graphene Oxide in Sub- and Supercritical Water," RSC Adv., 4 22589-95 (2014). https://doi.org/10.1039/c4ra01085j
- L. Wang, L. Sun, C. Tian, T. Tan, G. Mu, H. Zhang and H. Fu, "A Novel Soft Template Strategy to Fabricate Mesoporous Carbon/Graphene Composites as High-Performance Supercapacitor Electrodes," RSC. Adv., 2 8359-67 (2012). https://doi.org/10.1039/c2ra20845h
- J. H. Lee, R. Nankya, A. R. Kim and H. Jung, "Fine-Tuning the Pore Size of Mesoporous Graphene in a Few Nanometer-Scale by Controlling the Interaction between Graphite Oxide Sheets," Electrochim. Acta, 290 496-505 (2018). https://doi.org/10.1016/j.electacta.2018.09.110
- Y. Y. Liang, Y. G. Li, H. L. Wang and H. J. Dai, "Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis," J. Am. Chem. Soc., 135 2013-36 (2013). https://doi.org/10.1021/ja3089923
- Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec and S. Z. Qiao, "Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution," ACS Nano, 8 5290-6 (2014). https://doi.org/10.1021/nn501434a
- X. D. Huang, Y. F. Zhao, Z. M. Ao and G. X. Wang, "Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production," Sci. Rep., 4 7557 (2014). https://doi.org/10.1038/srep07557
- Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, "Hydrogen Evolution by a Metal-Free Electrocatalyst," Nat. Commun., 5 3783 (2014). https://doi.org/10.1038/ncomms4783
- K. J. Kim and H. G. Ahn, "The Effect of Pore Structure of Zeolite on the Adsorption of VOCs and Their Desorption Properties by Microwave Heating," Microporous Mesoporous Mater., 152 [1] 78-83 (2012). https://doi.org/10.1016/j.micromeso.2011.11.051
- L. Yu, L. Wang, W. Xu, L. Chen, M. Fu, J. Wu and D. Ye, "Adsorption of VOCs on Reduced Graphene Oxide," J. Environ. Sci., 67 171-8 (2018). https://doi.org/10.1016/j.jes.2017.08.022
- J. H. Lee, M. G. Kang, I. K. Shim, D. H. Lee, A. R. Kim and H. Jung, "Pore Parameters-Dependent Adsorption Behavior of Volatile Organic Compounds on Graphene-Based Material," J. Nanosci. Nanotechnol., 18 [10] 6995-7003 (2018). https://doi.org/10.1166/jnn.2018.15448
- H. J. Kim, J. H. Lee, and H. Jung, "Study on the carbamoyl phosphine oxide moiety functionalized mesoporous graphene for the removal of rare earth elements," J. Porus. Mat., 26 931-939 (2019) https://doi.org/10.1007/s10934-018-0691-3
- B. J. Kwon, J. Y. Ku, K. H. Yu, J. E. Ko and H. Jung, "Preparation and Characterization of Carbamoylphosphonate(CMPO) Silane Grafted on Various Mesoporous Silicas," J. Phys. Chem. Solids, 71 663-8 (2010). https://doi.org/10.1016/j.jpcs.2009.12.061
- G. E. Fryxell, H. Wu, Y. Lin, W. J. Shaw, J. C. Birnbaum, J. C. Lineban, Z. Nie, K. Kemner and S. Kelly, "Lanthanide selective sorbents: self-assembled monolayers on mesoporous supports (SAMMS)," J. Mater. Chem., 14 3356-63 (2004) https://doi.org/10.1039/b408181a
- S. Han, D. Wu, S. Li, F. Zhang and X. Feng, "Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices," Adv. Mater., 26 849-64 (2014). https://doi.org/10.1002/adma.201303115
- R. Nankya, J. H. Lee, D. O. Opar and H. Jung, "Electrochemical Behavior of Boron-Doped Mesoporous Graphene Depending on its Boron Configuration," Appl. Surf. Sci., 489 552-9 (2019).
- R. Marschall, "Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity,"Adv. Funct. Mater., 24 2421-40 (2014). https://doi.org/10.1002/adfm.201303214
- P. Wardman, "Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution," J. Phys. Chem. Ref. Data, 18 1637-755 (1989). https://doi.org/10.1063/1.555843
-
S. N. Habisreutinger, L. Schidt-Mende and J. K. Stolarczyk, "Photocatalytic Reduction of
$CO_2$ on$TiO_2$ and Other Semiconductors," Angew. Chem., Int. Ed., 52 7372-408 (2013). https://doi.org/10.1002/anie.201207199 - P. V. Kamat, "Graphene-Based Nanoassemblies for Energy Conversion," J. Phys. Chem. Lett., 2 242-51 (2011). https://doi.org/10.1021/jz101639v
-
S. W. Hong, A. R. Kim, J. H. Choi, H. Jung, and J. K. Park, "Intercalation of conjugated polyelectrolytes
${\odot}$ in layered titanate nanosheets for enhancement in photocatalytic activity," J. Solid State Chem., 269 291-6 (2019). https://doi.org/10.1016/j.jssc.2018.09.038 -
M. Myilsamy, M. Mahalakshmi, N. Subha, A. Rajabhuvaneswari and V. Murugesan, "Visible Light Responsive Mesoporous Graphene-
$Eu_2O_3$ /$TiO_2$ Nanocomposites for the Efficient Photocatalytic Degradation of 4-Chlorophenol," RSC Adv., 6 35024-35 (2016). https://doi.org/10.1039/C5RA27541E
Cited by
- The Strength and Delamination of Graphene/Cu Composites with Different Cu Thicknesses vol.14, pp.11, 2019, https://doi.org/10.3390/ma14112983
- The Effect of Cracks on Mechanical Performance and Fracture in Cu-based Graphene Nanocomposites vol.25, pp.4, 2019, https://doi.org/10.9726/kspse.2021.25.4.041