DOI QR코드

DOI QR Code

Three-dimensional Nanoporous Graphene-based Materials and Their Applications

3차원 나노 다공성 그래핀의 제조와 응용

  • Received : 2019.08.26
  • Accepted : 2019.09.10
  • Published : 2019.09.30

Abstract

Graphene, a two-dimensional material with a single atomic layer, has recently become a major research focus in various applications such as electronic devices, sensors, energy storage, catalysts, and adsorbents, because of its large theoretical surface area, excellent electrical conductivity, outstanding chemical stability, and good mechanical properties. Recently, 3D nanoporous graphene structures have received tremendous attention to expand the application of 2D graphene. Here, we overview the synthesis of 3D nanoporous graphene network structure with two-dimensional graphite oxide sheets, the control of porous parameters such as specific surface area, pore volume and pore size etc, and the modification of electronic structure by heteroatom doping along with its various applications. The 3D nanoporous graphene shows superior performance in diverse applications as a promising key material. Consequently, 3D nanoporous graphene can lead the future for advanced nanotechnology.

Keywords

References

  1. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, "Graphene Based Materials: Past, Present and Future," Prog. Mater. Sci., 56 1178-271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
  2. W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," J. Am. Chem. Soc., 80 1339 (1958). https://doi.org/10.1021/ja01539a017
  3. L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Strom, S. Farris and R. T. Olsson, "Experimental Review: Chemical Reduction of Graphene Oxide(GO) to Reduced Graphene Oxide (rGO) by Aqueous Chemistry," Nanoscale, 9 9562-71 (2017). https://doi.org/10.1039/C7NR02943H
  4. D. H. Everett, "Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry," Pure Appl. Chem., 31 578-638 (1972). https://doi.org/10.1351/pac197231040577
  5. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqu erol and T. Siemieniewska, "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984)," Pure Appl. Chem., 57 603-19 (1985). https://doi.org/10.1351/pac198557040603
  6. S. J. Gregg and K. S. W. Sing, "Adsorption, Surface Area, and Porosity," 2nd ed., Academic Press, New York, 1982.
  7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, 320 1308 (2008). https://doi.org/10.1126/science.1156965
  8. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The Electronic Properties of Graphene," Rev. Mod. Phys., 81 109-62 (2009) https://doi.org/10.1103/RevModPhys.81.109
  9. H. Liu, Y. Liu and D. Zhu, "Chemical Doping of Graphene," J. Mater. Chem., 21 3335-45 (2011). https://doi.org/10.1039/c0jm02922j
  10. J . L. Vickery, A. J. Patil and S. Mann, "Fabrication of Graphene-Polymer Nanocomposites with Higher-Order Three-Dimensional Architectures," Adv. Mater., 21 2180-4 (2009). https://doi.org/10.1002/adma.200803606
  11. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, "The Chemistry of Graphene Oxide," Chem. Soc. Rev., 39 228-40 (2010). https://doi.org/10.1039/B917103G
  12. H . P. Mungse, O. P. Sharma, H. Sugimura and O. P. Khatri, "Hydrothermal Deoxygenation of Graphene Oxide in Sub- and Supercritical Water," RSC Adv., 4 22589-95 (2014). https://doi.org/10.1039/c4ra01085j
  13. L. Wang, L. Sun, C. Tian, T. Tan, G. Mu, H. Zhang and H. Fu, "A Novel Soft Template Strategy to Fabricate Mesoporous Carbon/Graphene Composites as High-Performance Supercapacitor Electrodes," RSC. Adv., 2 8359-67 (2012). https://doi.org/10.1039/c2ra20845h
  14. J. H. Lee, R. Nankya, A. R. Kim and H. Jung, "Fine-Tuning the Pore Size of Mesoporous Graphene in a Few Nanometer-Scale by Controlling the Interaction between Graphite Oxide Sheets," Electrochim. Acta, 290 496-505 (2018). https://doi.org/10.1016/j.electacta.2018.09.110
  15. Y. Y. Liang, Y. G. Li, H. L. Wang and H. J. Dai, "Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis," J. Am. Chem. Soc., 135 2013-36 (2013). https://doi.org/10.1021/ja3089923
  16. Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec and S. Z. Qiao, "Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution," ACS Nano, 8 5290-6 (2014). https://doi.org/10.1021/nn501434a
  17. X. D. Huang, Y. F. Zhao, Z. M. Ao and G. X. Wang, "Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production," Sci. Rep., 4 7557 (2014). https://doi.org/10.1038/srep07557
  18. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, "Hydrogen Evolution by a Metal-Free Electrocatalyst," Nat. Commun., 5 3783 (2014). https://doi.org/10.1038/ncomms4783
  19. K. J. Kim and H. G. Ahn, "The Effect of Pore Structure of Zeolite on the Adsorption of VOCs and Their Desorption Properties by Microwave Heating," Microporous Mesoporous Mater., 152 [1] 78-83 (2012). https://doi.org/10.1016/j.micromeso.2011.11.051
  20. L. Yu, L. Wang, W. Xu, L. Chen, M. Fu, J. Wu and D. Ye, "Adsorption of VOCs on Reduced Graphene Oxide," J. Environ. Sci., 67 171-8 (2018). https://doi.org/10.1016/j.jes.2017.08.022
  21. J. H. Lee, M. G. Kang, I. K. Shim, D. H. Lee, A. R. Kim and H. Jung, "Pore Parameters-Dependent Adsorption Behavior of Volatile Organic Compounds on Graphene-Based Material," J. Nanosci. Nanotechnol., 18 [10] 6995-7003 (2018). https://doi.org/10.1166/jnn.2018.15448
  22. H. J. Kim, J. H. Lee, and H. Jung, "Study on the carbamoyl phosphine oxide moiety functionalized mesoporous graphene for the removal of rare earth elements," J. Porus. Mat., 26 931-939 (2019) https://doi.org/10.1007/s10934-018-0691-3
  23. B. J. Kwon, J. Y. Ku, K. H. Yu, J. E. Ko and H. Jung, "Preparation and Characterization of Carbamoylphosphonate(CMPO) Silane Grafted on Various Mesoporous Silicas," J. Phys. Chem. Solids, 71 663-8 (2010). https://doi.org/10.1016/j.jpcs.2009.12.061
  24. G. E. Fryxell, H. Wu, Y. Lin, W. J. Shaw, J. C. Birnbaum, J. C. Lineban, Z. Nie, K. Kemner and S. Kelly, "Lanthanide selective sorbents: self-assembled monolayers on mesoporous supports (SAMMS)," J. Mater. Chem., 14 3356-63 (2004) https://doi.org/10.1039/b408181a
  25. S. Han, D. Wu, S. Li, F. Zhang and X. Feng, "Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices," Adv. Mater., 26 849-64 (2014). https://doi.org/10.1002/adma.201303115
  26. R. Nankya, J. H. Lee, D. O. Opar and H. Jung, "Electrochemical Behavior of Boron-Doped Mesoporous Graphene Depending on its Boron Configuration," Appl. Surf. Sci., 489 552-9 (2019).
  27. R. Marschall, "Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity,"Adv. Funct. Mater., 24 2421-40 (2014). https://doi.org/10.1002/adfm.201303214
  28. P. Wardman, "Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution," J. Phys. Chem. Ref. Data, 18 1637-755 (1989). https://doi.org/10.1063/1.555843
  29. S. N. Habisreutinger, L. Schidt-Mende and J. K. Stolarczyk, "Photocatalytic Reduction of $CO_2$ on $TiO_2$ and Other Semiconductors," Angew. Chem., Int. Ed., 52 7372-408 (2013). https://doi.org/10.1002/anie.201207199
  30. P. V. Kamat, "Graphene-Based Nanoassemblies for Energy Conversion," J. Phys. Chem. Lett., 2 242-51 (2011). https://doi.org/10.1021/jz101639v
  31. S. W. Hong, A. R. Kim, J. H. Choi, H. Jung, and J. K. Park, "Intercalation of conjugated polyelectrolytes ${\odot}$ in layered titanate nanosheets for enhancement in photocatalytic activity," J. Solid State Chem., 269 291-6 (2019). https://doi.org/10.1016/j.jssc.2018.09.038
  32. M. Myilsamy, M. Mahalakshmi, N. Subha, A. Rajabhuvaneswari and V. Murugesan, "Visible Light Responsive Mesoporous Graphene-$Eu_2O_3$ /$TiO_2$ Nanocomposites for the Efficient Photocatalytic Degradation of 4-Chlorophenol," RSC Adv., 6 35024-35 (2016). https://doi.org/10.1039/C5RA27541E

Cited by

  1. The Strength and Delamination of Graphene/Cu Composites with Different Cu Thicknesses vol.14, pp.11, 2019, https://doi.org/10.3390/ma14112983
  2. The Effect of Cracks on Mechanical Performance and Fracture in Cu-based Graphene Nanocomposites vol.25, pp.4, 2019, https://doi.org/10.9726/kspse.2021.25.4.041