References
- W. K. Bae, K. Char, H. Hur, and S. Lee, "Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients" Chem. Mater., 20 [2] 531-39 (2008). https://doi.org/10.1021/cm070754d
- N. K. Kumawat, D. Gupta, and D. Kabra, "Recent Advances in Metal Halide-Based Perovskite Light-Emitting Diodes" Energy Technol., 5, 1734 - 1749 (2017) https://doi.org/10.1002/ente.201700356
- C. Bizzarri, F. Hundemer, J. Busch, and S. Brase, "Triplet emitters versus TADF emitters in OLEDs: A comparative study" Polyhedron, 140, 51-66 (2018) https://doi.org/10.1016/j.poly.2017.11.032
- K. Matsuo, and T. Yasuda, 'Boronate- and borinate-based p-systems for blue thermally activated delayed fluorescence materials", Chem. Commun., 55, 2501-2504 (2019) https://doi.org/10.1039/c8cc10282a
- Michael Y. Wong, Eli Zysman-Colman, "Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs)", Beilstein J. Org. Chem., 14, 282-308 (2018) https://doi.org/10.3762/bjoc.14.18
- A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, "Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes" Appl. Phys. Lett., 98 [8] 083302 (2011) https://doi.org/10.1063/1.3558906
- Ye Tao , Kai Yuan, Ting Chen , Peng Xu , Huanhuan Li, Runfeng Chen, Chao Zheng, Lei Zhang, and Wei Huang, "Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics", Adv. Mater., 26(47), 7931-7958 (2014) https://doi.org/10.1002/adma.201402532
- T. Nakagawa, S. Y. Ku, K. T. Wong, and C. Adachi, "Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure", Chem. Commun., 48, 9580 (2012) https://doi.org/10.1039/c2cc31468a
- G. Mehes, H. Nomura, Q. S. Zhang, T. Nakagawa, and C. Adachi, "Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence", Angew. Chem. Int. Edit., 51, 11311 (2012) https://doi.org/10.1002/anie.201206289
- H . Uoyama, K. Goushi, K. Shizu, H. Nomura, and C . Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence", Nature, 492, 234 (2012) https://doi.org/10.1038/nature11687
- Y. J. Cho, S. K. Jeon, S.-S. Lee, E. Yu, and J. Y. Lee, "Donor Interlocked Molecular Design for Fluorescencelike Narrow Emission in Deep Blue Thermally Activated Delayed Fluorescent Emitters" Chem. Mater., 28, 5400 (2016) https://doi.org/10.1021/acs.chemmater.6b01484
- C.-Y. Chan, M. Tanaka, H. Nakanotani, and C. Adachi, "Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4" Nat. Commun., 9, 5036 (2018) https://doi.org/10.1038/s41467-018-07482-6
- D. Zhang, L. Duan, C. Li , Y. Li, H. Li, D. Zhang, and Y. Qiu, "High-Efficiency Fluorescent Organic Light- Emitting Devices Using Sensitizing Hosts with a Small Singlet-Triplet Exchange Energy" Adv. Mater., 26, 5050 (2014) https://doi.org/10.1002/adma.201401476
- K. Sato, K. Shizu, K. Yoshimura, A. Kawada, H. Miyazaki, and C. Adachi, "Organic Luminescent Molecule with Energetically Equivalent Singlet and Triplet Excited States for Organic Light-Emitting Diodes" Phys. Rev. Lett., 110, 247401 (2013) https://doi.org/10.1103/physrevlett.110.247401
- K. Shizu, H. Noda, H. Tanaka, M. Taneda, M. Uejima, T. Sato, K. Tanaka, H. Kaji, and C. Adachi, "Highly Efficient Blue Electroluminescence Using Delayed-Fluorescence Emitters with Large Overlap Density between Luminescent and Ground States" J. Phys. Chem. C, 119, 26283 (2015) https://doi.org/10.1021/acs.jpcc.5b07798
- K. Shizu, M. Uejima, H. Nomura, T. Sato, K. Tanaka, H. Kaji, and C. Adachi, "Enhanced Electroluminescence from a Thermally Activated Delayed-Fluorescence Emitter by Suppressing Nonradiative Decay" Phys. Rev. Appl., 3, 014001 (2015) https://doi.org/10.1103/PhysRevApplied.3.014001
- H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, and C. Adachi, "Purely organic electroluminescent material realizing 100% conversion from electricity to light" Nat. Commun., 6, 8476 (2015) https://doi.org/10.1038/ncomms9476
- Y. Kitamoto, T. Namikawa, D. Ikemizu, Y. Miyata, T. Suzuki, H. Kita, T. Sato, and S. Oi, "Light blue and green thermally activated delayed fluorescence from 10H-phenoxaborin-derivatives and their application to organic light-emitting diodes" J. Mater. Chem. C, 3, 9122 (2015) https://doi.org/10.1039/C5TC01380A
- K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi, and H. Kaji, "Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20" Angew. Chem., Int. Ed. Engl., 54, 15231 (2015) https://doi.org/10.1002/anie.201508270
- M. Numata, T. Yasuda, and C. Adachi, "High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units" Chem. Commun., 51, 9443 (2015) https://doi.org/10.1039/c5cc00307e
- T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, and T. Ikuta, "Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect" Adv. Mater., 28, 2777 (2016) https://doi.org/10.1002/adma.201505491
- T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. C.-Cheng, H.-W. Lin, R.-S. Liu, and C.-H. Cheng, "Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off" Nature Photonics, 12, 235-240 (2018) https://doi.org/10.1038/s41566-018-0112-9
- D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, and J. H. Kwon, "Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors" Nature Photonics, 13, 540-546 (2019) https://doi.org/10.1038/s41566-019-0415-5
- Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, "Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence" Nat. Photon. , 8, 326 (2014) https://doi.org/10.1038/nphoton.2014.12
- P. L. dos Santos, J. S. Ward, M. R. Bryce, and A. P. Monkman,"Using Guest-Host Interactions To Optimize the Efficiency of TADF OLEDs" J. Phys. Chem. Lett., 7, 3341-3346 (2016) https://doi.org/10.1021/acs.jpclett.6b01542
- S. Y. Lee, C. Adachi, and T. Yasuda, "High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives" Adv. Mater., 28, 4626-4631 (2016) https://doi.org/10.1002/adma.201506391
- S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang, and C. Adachi, "Luminous butterflies: efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs" Angew. Chem. Int. Edit., 53, 6402 (2014) https://doi.org/10.1002/anie.201402992
- K. Nasu, T. Nakagawa, H. Nomura, C. J. Lin, C. H. Cheng, M. R. Tseng, T. Yasuda, and C. Adachi, "A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence" Chem. Commun., 49, 10385 (2013). https://doi.org/10.1039/c3cc44179b
- Q. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae, T. Shibata, and C. Adachi, "Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence" J. Am. Chem. Soc., 136, 18070 (2014) https://doi.org/10.1021/ja510144h
- P. Rajamalli, N. Senthilkumar, P. Gandeepan, P. Y. Huang, M. J. Huang, C. Z. Ren-Wu, C. Y. Yang, M. J. Chiu, L. K. Chu, H. W. Lin, and C. H. Cheng, "A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes" J. Am. Chem. Soc., 138, 628 (2016) https://doi.org/10.1021/jacs.5b10950