References
- BCS, Waste Heat Recovery: Technology and Opportunities in U.S. Industry Engineering Scoping Study; pp. 13, U.S. Department of Energy, Industrial Technologies Program, 2008.
- K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures," Nature, 489 414-18 (2012). https://doi.org/10.1038/nature11439
- X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports," J. Am. Chem. Soc., 133 [20] 7837-46 (2011). https://doi.org/10.1021/ja111199y
-
S. Chen, K. C. Lukas, W. Liu, C. P. Opeil, G. Chen, and Z. Ren, "Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Materials
$HfxZr_{1-x}NiSn_{0.99}Sb_{0.01}$ ," Adv. Funct. Mater., 3 [9] 1210-14 (2013). -
W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, "Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type
$Mg_2Si_{1-x}Sn_x$ Solid Solutions," Phys. Rev. Lett., 108 [16] 166601 (2012). https://doi.org/10.1103/PhysRevLett.108.166601 - L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals," Nature, 508 373-77 (2014). https://doi.org/10.1038/nature13184
- W. D. Liu, Z. G. Chen, and J. Zou, "Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges," Adv. Energy Mater., 8 [19] 1800056 (2018). https://doi.org/10.1002/aenm.201800056
-
Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, "High Figures of Merit and Natural Nanostructures in
$Mg_2Si_{0.4}Sn_{0.6}$ based Thermoelectric Materials," Appl. Phys. Lett., 93 [10] 102109 (2008). https://doi.org/10.1063/1.2981516 - H. Lee, G. Kim, B. Lee, J. Kim, S. M. Choi, K. H. Lee, and W. Lee, "Effect of Si Content on the Thermoelectric Transport Properties of Ge-doped Higher Manganese Silicides," Scr. Mater., 135 72-5 (2017). https://doi.org/10.1016/j.scriptamat.2017.03.011
- Y. Gelbstein, J. Tunbridge, R. Dixon, M. J. Reece, H. Ning, R. Gilchrist, R. Summers, I. Agote, M. A. Lagos, K. Simpson, C. Rouaud, P. Feulner, S. Rivera, R. Torrecillas, M. Husband, J. Crossley, and I. Robinson, "Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications," J. Electron. Mater., 43 [6] 1703-11 (2014). https://doi.org/10.1007/s11664-013-2848-9
-
G. Kim, H. Lee, J. Kim, J. W. Roh, I. Lyo, B. W. Kim, K. H. Lee, and W. Lee, "Enhanced Fracture Toughness of Al and Bi Co-doped
$Mg_2Si$ by Metal Nanoparticle Decoration," Ceram. Int., 43 [15] 12979-82 (2017). https://doi.org/10.1016/j.ceramint.2017.06.002 -
G. Kim, H. Lee, H. J. Rim, J. Kim, K. Kim, J. W. Roh, S. M. Choi, B. W. Kim, K. H. Lee, and W. Lee, "Dependence of Mechanical and Thermoelectric Properties of
$Mg_2Si$ -Sn Nanocomposites on Interface Density," J. Alloys Compd., 769 53-8 (2018). https://doi.org/10.1016/j.jallcom.2018.07.323 - J. Boor, T. Dasgupta, H. Kolb, C. Compere, K. Kelm, and E. Mueller, "Microstructural Effects on Thermoelectric Efficiency: A Case Study on Magnesium Silicide," Acta Mater., 77 68-75 (2014). https://doi.org/10.1016/j.actamat.2014.05.041
-
G. Kim, S. W. Kim, H. J. Rim, H. Lee, J. Kim, J. W. Roh, B. W. Kim, K. H. Lee, and W. Lee, "Improved Trade-Off between Thermoelectric Performance and Mechanical Reliability of
$Mg_2Si$ by Hybridization of Few-Layered Reduced Graphene Oxides," Scr. Mater., 162 402-7 (2019). https://doi.org/10.1016/j.scriptamat.2018.11.052 - N. Satyala and D. Vashaee, "Detrimental Influence of Nanostructuring on the Thermoelectric Properties of Magnesium Silicide," J. Appl. Phys., 112 [9] 093716 (2012). https://doi.org/10.1063/1.4764872
-
P. Norouzzadeh, Z. Zamanipour, J. S. Krasinski, and D. Vashaee, "The Effect of Nanostructuring on Thermoelectric Transport Properties of p-Type Higher Manganese Silicide
$MnSi_{1.73}$ ," J. Appl. Phys., 112 [12] 124308 (2012). https://doi.org/10.1063/1.4769884 -
N. Satyala and D. Vashaee, "The Effect of Crystallite Size on Thermoelectric Properties of Bulk Nanostructured Magnesium Silicide (
$Mg_2Si$ ) Compounds," Appl. Phys. Lett., 100 073107 (2012). https://doi.org/10.1063/1.3684615 -
G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B. W. Kim, S. W. Kim, K. H. Lee, and W. Lee, "Co-doping of Al and Bi to Control the Transport Properties for Improving Thermoelectric Performance of
$Mg_2Si$ ," Scr. Mater., 116 11-15 (2011). https://doi.org/10.1016/j.scriptamat.2016.01.027 -
G. Kim, H. Lee, J. Kim, J. W. Roh, I. Lyo, B. W. Kim, K. H. Lee, and W. Lee, "Up-Scaled Solid State Reaction for Synthesis of Doped
$Mg_2Si$ ," Scr. Mater., 128 53-56 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.010 -
A. U. Khan, N. Vlachos, and Th. Kyratsi, "High Thermo-Electric Figure of Merit of
$Mg_2Si_{0.55}Sn_{0.4}Ge_{0.05}$ Materials Doped with Bi and Sb," Scr. Mater., 69 [8] 606-9 (2013). https://doi.org/10.1016/j.scriptamat.2013.07.008 - X. Chen, A. Weathers, D. Salta, L. Zhang, J. Zhou, J. B. Goodenough, and L. Shi, "Effects of (Al,Ge) Double Doping on the Thermoelectric Properties of Higher Manganese Silicides," J. Appl. Phys., 114 [17] 173705 (2013). https://doi.org/10.1063/1.4828731
-
K. Kim, G. Kim, S. I. Kim, K. H. Lee, and W. Lee, "Clarification of Electronic and Thermal Transport Properties of Pb-, Ag-, and Cu-doped p-type
$Bi_{0.52}Sb_{1.48}Te_3$ ," J. Alloys Compd., 772 593-602 (2019). https://doi.org/10.1016/j.jallcom.2018.09.099 - C. L. Chen, H. Wang, Y. Y. Chen, T. Day, and G. J. Snyder, "Thermoelectric Properties of p-Type Polycrystalline SnSe Doped with Ag," J. Mater. Chem. A, 2 [29] 11171-76 (2014). https://doi.org/10.1039/C4TA01643B
- G. Kim, H. J. Rim, K. H. Lee, J. W. Roh, and W. Lee, "Suppressed Secondary Phase Generation in Thermoelectric Higher Manganese Silicide by Fabrication Process Optimization," Ceram. Int., 45 [15] 19538-41 (2019). https://doi.org/10.1016/j.ceramint.2019.06.104
- Y. Sadia, Z. Aminov, D. Mogilyansky, and Y. Gelbstein, "Texture Anisotropy of Higher Manganese Silicide Following Arc-Melting and Hot-Pressing," Intermetallics, 68 71-7 (2016). https://doi.org/10.1016/j.intermet.2015.08.009
- S. Muthiah, R. C. Singh, B. D. Pathak, P. K. Avasthi, R. Kumar, A. Kumar, A. K. Srivastava, and A. Dhar, "Significant Enhancement in Thermoelectric Performance of Nanostructured Higher Manganese Silicides Synthesized Employing a Melt Spinning Technique," Nanoscale, 10 [4] 1970-77 (2018). https://doi.org/10.1039/C7NR06195A
- B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science, 320 [5876] 634-38 (2008). https://doi.org/10.1126/science.1156446
-
N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. R. Salvador, and H. Kleinke, "Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped
$Mg_2Si_{0.7}Ge_{0.3}$ ," J. Electron. Mater., 45 [12] 6052-58 (2016). https://doi.org/10.1007/s11664-016-4892-8 -
N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. Zhao, J. S. Tse, J. R. Salvador, and H. Kleinke, "Enhanced Figure of Merit in
$Mg_2Si_{0.877}Ge_{0.1}Bi_{0.023}$ /Multi Wall Carbon Nanotube Nanocomposites," RSC Adv., 5 65328-36 (2015). https://doi.org/10.1039/C5RA12225B -
T. Itoh and A. Tominaga, "Influence of Pulverization and CaO Nanoparticles Addition on Thermoelectric Properties and Grain Growth of
$Mg_2Si$ Based Compound," Mater. Trans., 57 [7] 1088-93 (2016). https://doi.org/10.2320/matertrans.Y-M2016812 -
T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N. A. Katcho, A. Shakouri, N. Mingo, J. P. Fleurial, N. D. Browning, and S. M. Kauzlarich, "Synthesis and Characterization of
$Mg_2Si$ /Si Nanocomposites Prepared from$MgH_2$ and Silicon, and Their Thermoelectric Properties," J. Mater. Chem., 22 24805-13 (2012). https://doi.org/10.1039/c2jm35257e -
D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, A. E. C. Palmqvist, "Enhanced Thermoelectric Properties of
$Mg_2Si$ by Addition of$TiO_2$ Nanoparticles," J. Appl. Phys., 111 [47] 023701 (2012). https://doi.org/10.1063/1.3675512 - Y. Lin, K. A. Watson, M. J. Fallbach, S. Ghose, J. G. Smith, D. M. Delozier Jr., W. Cao, R. E. Crooks, and J. W. Connell, "Rapid, Solventless, Bulk Preparation of Metal Nanoparticle-Decorated Carbon Nanotubes," ACS Nano, 3 [4] 871-84 (2009). https://doi.org/10.1021/nn8009097
-
G. Kim, H. J. Rim, H. Lee, J. Kim, J. W. Roh, K. H. Lee, and W. Lee, "
$Mg_2Si$ -based Thermoelectric Compounds with Enhanced Fracture Toughness by Introduction of Dual Nanoinclusions," J. Alloys Compd., 801 234-38 (2019). https://doi.org/10.1016/j.jallcom.2019.06.075 -
K. Yin, X. Su, Y. Yan, H. Tang, M. G. Kanatzidis, C. Uher, and X. Tang, "Morphology Modulation of SiC Nano-Additives for Mechanical Robust High Thermoelectric Performance
$Mg_2Si_{1-x}Sn_x/SiC$ Nano-Composites," Scr. Mater., 126 1-5 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.010 - Z. Li, J. F. Dong, F. H. Sun, Asfandiyar, Y. Pan, S. F. Wang, Q. Wang, D. Zhang, L. Zhao, and J. F. Li, "MnS Incorporation into Higher Manganese Silicide Yields a Green Thermoelectric Composite with High Performance/Price Ratio," Adv. Sci., 5 [9] 1800626 (2018). https://doi.org/10.1002/advs.201800626
-
B. Zhang, T. Zheng, Q. Wang, Y. Zhu, H. N. Alshareef, M. J. Kim, and B. E. Gnade, "Contact Resistance and Stability Study for Au, Ti, Hf and Ni Contacts on Thin-Film
$Mg_2Si$ ," J. Alloys Compd., 699 1134-39 (2017). https://doi.org/10.1016/j.jallcom.2016.12.229 - Z. Li, J. F. Dong, F. H. Sun, S. Hirono, and J. F. Li, "Significant Enhancement of the Thermoelectric Performance of Higher Manganese Silicide by Incorporating MnTe Nanophase Derived from Te Nanowire," Chem. Mater., 29 [17] 7378-89 (2017). https://doi.org/10.1021/acs.chemmater.7b02270
Cited by
- Thermoelectric Properties in Bi2Te3/Poly(3,4-Ethylenedioxythiophene): Poly(4-Styrenesulfonate) Composites vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.08