DOI QR코드

DOI QR Code

Micro/Millimeter-Wave Dielectric Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects

  • Ohsato, Hitoshi (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu) ;
  • Varghese, Jobin (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu) ;
  • Vahera, Timo (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu) ;
  • Kim, Jeong Seog (Department of Material Science and Engineering, Hoseo University) ;
  • Sebastian, Mailadil T. (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu) ;
  • Jantunen, Heli (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu) ;
  • Iwata, Makoto (Department of Physical Science and Engineering, Nagoya Institute of Technology)
  • Received : 2019.10.24
  • Accepted : 2019.11.09
  • Published : 2019.11.30

Abstract

Indialite/cordierite glass-ceramics demonstrate excellent microwave dielectric properties such as a low dielectric constant of 4.7 and an extremely high quality factor Qf of more than 200 × 103 GHz when crystallized at 1300℃/20 h, which are essential criteria for application to 5G/6G mobile communication systems. The glass-ceramics applied to dielectric resonators, low-temperature co-fired ceramic (LTCC) substrates, and direct casting glass substrates are reviewed in this paper. The glass-ceramics are fabricated by the crystallization of glass with cordierite composition melted at 1550℃. The dielectric resonators are composed of crystallized glass pellets made from glass rods cast in a graphite mold. The LTCC substrates are made from indialite glass-ceramic powder crystallized at a low temperature of 1000℃/1 h, and the direct casting glass-ceramic substrates are composed of crystallized glass plates cast on a graphite plate. All these materials exhibit excellent microwave dielectric properties.

Keywords

References

  1. Ministry of Internal Affairs and Communications in Japan, http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h30/html/nd133420.html. Accessed on 26/11/2019.
  2. ITU towards "IMT for 2020 and beyond", https:// www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/ Pages/default.aspx. Accessed on 26/11/2019.
  3. S. Suzuki and M. Asada, "Terahertz Wireless Communications using Electronic Devices"; pp. 195-98 in Proceedings of the MWE2014 Microwave Workshops Digest, 2014.
  4. H. Ohsato, "Millimeter-Wave Materials," pp. 203-59 in Microwave Materials and Applications, Vol. 1, Ed. by M. T. Sebastian, R. Ubic, and H. Jantunen, Wiley, New York, 2017.
  5. H. Ohsato, "Microwave Dielectrics with Perovskite-Type Structure," pp. 281-330 in Perovskite Materials-Synthesis, Characterization, Properties, and Applications, Ed. by L. Pan, G. Zhu, INTECH, Rijeka, 2016.
  6. M. T. Sebastian Dielectric Materials for Wireless Communication; Elsevier, Amsterdam 2008.
  7. M. T. Sebastian, R. Ubic, and H. Jantunen, "Low-Loss Dielectric Ceramic Materials and Their Properties," Int. Mater. Rev., 60 [7] 392-412 (2015). https://doi.org/10.1179/1743280415Y.0000000007
  8. Y. Guo, H. Ohsato, and K. Kakimoto, "Characterization and Dielectric Behavior of Willemite and $TiO_2$-doped Willemite Ceramics at Millimeter-Wave Frequency," J. Eur. Ceram. Soc., 26 [10] 1827-30 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.008
  9. T. Tsunooka, H. Sugiura, Y. Higashida, T. Fukui, H. Okawa, and Y. Iwata, "Low-Permittivity Ceramic Dielectrics," JFCC Rev., 4 72-81 (1992).
  10. H. Ohsato, "Microwave Materials with High Q and Low Dielectric Constant for Wireless Communications," MRS Proc., 833 55-62 (2005).
  11. H. Ohsato, M. Ando, and T. Tsunooka, "Synthesis of Forsterite with High Q and Near Zero TCf for Microwave/ Millimeterwave Dielectrics," J. Korean Ceram. Soc., 44 [11] 597-606 (2007). https://doi.org/10.4191/KCERS.2007.44.1.597
  12. H. Ohsato, T. Tsunooka, T. Sugiyama, K. Kakimoto, and H. Ogawa, "Forsterite Ceramics for Millimeterwave Dielectrics," J. Electroceram., 17 [2-4] 445-50 (2006). https://doi.org/10.1007/s10832-006-0452-6
  13. L. Pauling, "The Nature of Silicon-Oxygen Bonds," Am. Mineral., 65 321-23 (1980).
  14. G. V. Gibbs, "The Polymorphism of Cordierite I: the Crystal Structure of Low Cordierite," Am. Mineral., 51 1068-87 (1966).
  15. M. Terada, K. Kawamura, I. Kagomiya, K. Kakimoto, and H. Ohsato, "Effect of Ni Substitution on the Microwave Dielectric Properties of Cordierite," J. Eur. Ceram. Soc., 27 [8-9] 3045-48 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.050
  16. H. Ohsato, M. Terada, I. Kagomiya, K. Kawamura, K. Kakimoto, and E. S. Kim, "Sintering Conditions of Cordierite for Microwave/Millimeterwave Dielectrics," IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 55 [5] 1082-85 (2008).
  17. H. Ohsato, I. Kagomiya, M. Terada, and K. Kakimoto, "Origin of Improvement of Q Based on High Symmetry Accompanying Si-Al Disordering in Cordierite Millimeter-Wave Ceramics," J. Eur. Ceram. Soc., 30 [2] 315-18 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.024
  18. H. Ohsato, J. S. Kim, A. Y. Kim, C. I. Cheon, and K. W. Chae, "Millimeter-Wave Dielectric Properties of Cordierite/ Indialite Glass Ceramics," Jpn. J. Appl. Phys., 50 [9S2] 09NF01 (2011). https://doi.org/10.7567/JJAP.50.09NF01
  19. H. Ohsato, J. S. Kim, C. I. Cheon, and I. Kagomiya, "Millimeter-Wave Dielectrics of Indialite/Cordierite Glass Ceramics: Estimating Si/Al Ordering by Volume and Covalency of Si/Al Octahedron," J. Ceram. Soc. Jpn., 121 [1416] 649-54 (2013). https://doi.org/10.2109/jcersj2.121.649
  20. J. Varghese, T. Vahera, H. Ohsato, M. Iwata, and H. Jantunen, "Novel Low-Temperature Sintering Ceramic Substrate based on Indialite/Cordierite Glass Ceramics," Jpn. J. Appl. Phys., 56 [10S] 10PE01 (2017). https://doi.org/10.7567/JJAP.56.10PE01
  21. H. Ohsato, J. Varghese, A. Kan, J-S. Kim, I. Kagomiya, H. Ogawa, M. T. Sebastian, and H. Jantunen, "Volume Crystallization and Improved TCf of Indialite/Cordierite Glass Ceramics by $TiO_2$ Addition," J. Ceram. Soc. Jpn., in preparation.
  22. H. Ohsato, J.-S. Kim, C.-I. Cheon, and I. Kagomiya, "Crystallization of Indialite/Cordierite Glass Ceramics for Millimeter-Wave Dielectrics," Ceram. Int., 41 S588-95 (2015). https://doi.org/10.1016/j.ceramint.2015.03.140
  23. Fullprof Software by Juan Rodriguez-Carvajal in France, http://www-llb.cea.fr/fullweb/powder.htm. Accessed on 26/11/2019.
  24. B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range," IEEE Trans. Microwave Theory Tech., 8 [4] 402-10 (1960). https://doi.org/10.1109/TMTT.1960.1124749
  25. Y. Kobayasi and M. Kato, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Resonator Method," IEEE Trans. Microwave Theory Tech., 33 [7] 586-92 (1985). https://doi.org/10.1109/TMTT.1985.1133033
  26. "Split Post Dielectric Resonators for Dielectric Measurements of Substrates", Agilent Application Note 5989-5384EN, 2006.
  27. I. Ogata, K. Mizutani, K. Makino, and Y. Kobayashi, "Analysis of the Low Thermal Expansion Mechanism of Preferably Oriented (in Japanese)," DENSO Tech. Rev., 13 112-18 (2008).
  28. I. Kagomiya and H. Ohsato, "Crystallized Glass Ceramic Dielectrics for High Frequency"; Japanese Patent Application No.2014-164285, 2014.
  29. H. Ohsato, "Practicing Applied Mineralogy on the Electroceramics - Examples: Microwave and Millimeter-Wave Dielectrics," Jpn. Mag. Mineral. Petrol. Sci., 47 [1] 43-50 (2018).
  30. R. E. Mistler and E. R. Twiname, Tape Casting: Theory and Practice; American Ceramic Society, Westerville, OH, 2000.
  31. Y. T. Fei, S. J. Fan, R. Y. Sun, and M. Ishii, "Study on Phase Diagram of $Bi_2O_3-SiO_2$ System for Bridgman Growth of $Bi_4Si_3O_{12}$ Single Crystal," Prog. Cryst. Growth Charact. Mater., 40 [1-4] 183-88 (2000). https://doi.org/10.1016/S0960-8974(00)00003-6

Cited by

  1. Microwave dielectric properties of Mg4Nb2−x(Zr1/2W1/2)xO9 ceramics vol.57, pp.3, 2020, https://doi.org/10.1007/s43207-020-00035-y
  2. Synthesis and Microwave Dielectric Properties of BBSZ-Zinc Silicate Based Material for LTCC Applications vol.50, pp.3, 2019, https://doi.org/10.1007/s11664-020-08631-8
  3. Aspects of development and properties of densely sintered of ultra-high-frequency radio-transparent ceramics of cordierite composition vol.58, pp.4, 2019, https://doi.org/10.1007/s43207-021-00125-5
  4. Structural, Thermal and Dielectric Properties of Low Dielectric Permittivity Cordierite-Mullite-Glass Substrates at Terahertz Frequencies vol.14, pp.14, 2021, https://doi.org/10.3390/ma14144030
  5. Compositional effects of Nb site on microwave dielectric properties of Mg4(Nb,Ta,Sb)2O9 ceramics vol.58, pp.5, 2021, https://doi.org/10.1007/s43207-021-00133-5
  6. Exploring Dielectric Constant and Dissipation Factor of LTCC Using Machine Learning vol.14, pp.19, 2019, https://doi.org/10.3390/ma14195784
  7. Novel series of high-Q oxyfluoride microwave dielectric ceramics for LTCC applications vol.899, 2019, https://doi.org/10.1016/j.jallcom.2021.163145