DOI QR코드

DOI QR Code

Sensing performances of Semiconducting Carbon Nanomaterials based Gas Sensors Operating at Room Temperature

반도체 탄소 나노재료 기반 상온 동작용 가스센서

  • Choi, Sun-Woo (Department of Materials Science and Engineering, Kangwon National University)
  • 최선우 (강원대학교 신소재공학과)
  • Received : 2019.03.08
  • Accepted : 2019.03.22
  • Published : 2019.03.30

Abstract

Semiconducting carbon-based nanomaterials including single-walled carbon nanotubes(SWCNTs), multi-walled CNT(MWCNTs), graphene(GR), graphene oxide(GO), and reduced graphene oxide(RGO), are very promising sensing materials due to their large surface area, high conductivity, and ability to operate at room temperature. Despite of these advantages, the semiconducting carbon-based nanomaterials intrinsically possess crucial disadvantages compared with semiconducting metal oxide nanomaterials, such as relatively low gas response, irreversible recovery, and poor selectivity. Therefore, in this paper, we introduce a variety of strategies to overcome these disadvantages and investigate principle parameters to improve gas sensing performances.

Keywords

References

  1. T. Seiyama, A. Kato, K. Fujishi, and M. Nagatani, "A New Detector for Gaseous Components Using Semiconductive Thin Films," Anal. Chem., 34 [11] 1502-3 (1962) https://doi.org/10.1021/ac60191a001
  2. A. Mirzaei, J.-H. Kim, H. W. Kim, and S. S. Kim, "Resistive-Based Gas Sensors for Detection of Benzene, Toluene and Xylene (BTX) Gases: A Review," J. Mater. Chem. C, 6 4342-70 (2018) https://doi.org/10.1039/C8TC00245B
  3. M.-H. Kim, J.-S. Jang, W.-T. Koo, S.-J. Choi, S.-J. Kim, D.-H. Kim, and I.-D. Kim, "Bimodally Porous WO3 Microbelts Functionalized with Pt Catalysts for Selective $H_2S$ Sensors," ACS Appl. Mater. Interfaces, 10 20643-51 (2018) https://doi.org/10.1021/acsami.8b00588
  4. S.-W. Choi, A. Katoch, J.-H. Kim, and S. S. Kim, "Remarkable Improvement of Gas-Sensing Abilities in p-type Oxide Nanowires by Local Modification of the Hole-Accumulation Layer," ACS Appl. Mater. Interfaces, 7 647-57 (2015) https://doi.org/10.1021/am5068222
  5. H. W. Kim, H. G. Na, Y. J. Kwon, S. Y. Kang, M. S. Choi, J. H. Bang, P. Wu, and S. S. Kim, "Microwave-Assisted Synthesis of Graphene-$SnO_2$ Nanocomposites and Their Applications in Gas Sensors," ACS Appl. Mater. Interfaces, 9 31667-82 (2017) https://doi.org/10.1021/acsami.7b02533
  6. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube Molecular Wires as Chemical Sensors," Science, 287 622-5 (2000) https://doi.org/10.1126/science.287.5453.622
  7. L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, L. Lozzi, and S. Santucci, "Sensors for Sub-ppm $NO_2$ Gas Detection Based on Carbon Nanotube Thin Films," Appl. Phys. Lett., 82 [6] 961-3 (2003) https://doi.org/10.1063/1.1545166
  8. C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny, and S. Santucci, "$NO_2$ Gas Sensitivity of Carbon Nanotubes Obtained by Plasma Enhanced Chemical Vapor Deposition," Sens. Actuators B: Chem., 93 333-7 (2003) https://doi.org/10.1016/S0925-4005(03)00224-7
  9. K. H. An, S. Y. Jeong, H. R. Hwang, and Y. H. Lee, "Enhanced Sensitivity of a Gas Sensor Incorporating Single-Walled Carbon Nanotube-Polypyrrole Nanocomposites," Adv. Mater., 16 [12] 1005-9 (2004) https://doi.org/10.1002/adma.200306176
  10. Z. J. Han, H. Mehdipour, X. G. Li, J. Shen, L. Randeniya, and H. Y. Yang, "SWCNT Networks on Nanoporous Silica Catalyst Support: Morphological and Connectivity Control for nanoelectronic, Gas-Sensing, and Biosensing Devices, ACS Nano, 6 5809-19 (2012) https://doi.org/10.1021/nn302020a
  11. M. Y. Lone, A. Kumar, S. Husain, M. Zulfequar, Harsh, and M. Husain, "Growth of Single Wall Carbon Nanotubes using PECVD Technique: An Efficient Chemiresistor Gas Sensor," Physica E, 87 261-5 (2017) https://doi.org/10.1016/j.physe.2016.10.049
  12. D. Kumar, I. Kumar, P. Chaturvedi, A. Chouksey, R. P. Tandon, and P. K. Chaudhury, "Study of Simultaneous Reversible and Irreversible Adsorption on Single-Walled Carbon Nanotube Gas Sensor," Mater. Chem. Phys., 177 276-82 (2016) https://doi.org/10.1016/j.matchemphys.2016.04.028
  13. P. Slobodian, P. Riha, A. Lengalova, P. Svoboda, and P. Saha, "Multi-Wall Carbon Nanotube Networks as Potential Resistive Gas Sensors for Organic Vapor Detection," Carbon, 49 2499-507 (2011) https://doi.org/10.1016/j.carbon.2011.02.020
  14. H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M.C. Cheng, "Carbon Dioxide Gas Sensor Using a Graphene Sheet," Sens. Actuators B: Chem., 157 310-3 (2011) https://doi.org/10.1016/j.snb.2011.03.035
  15. G. H. Lu, L. E. Ocola, and J. H. Chen, "Reduced Graphene Oxide for Room-Temperature Gas Sensors," Nanotechnology, 20 445502 (2009) https://doi.org/10.1088/0957-4484/20/44/445502
  16. J. Wang, Y. Kwak, I. Y. Lee, S. Maeng, and G. H. Kim, "Highly Responsive Hydrogen Gas Sensing by Partially Reduced Graphite Oxide Thin Films at Room Temperature," Carbon, 50 4061-7 (2012) https://doi.org/10.1016/j.carbon.2012.04.053
  17. R. Kumar, K. K. Avasthi, and A. Kaur, "Fabrication of Chemiresistive Gas Sensors based on Multistep Reduced Graphene Oxide for Low Parts per Million Monitoring of Sulfur Dioxide at Room Temperature," Sens. Actuators B: Chem., 242 461-8 (2017) https://doi.org/10.1016/j.snb.2016.11.018
  18. Y. Seekaew, D. Phokharatkul, A. Wisitsoraat, and C. Wongchoosuk, "Highly Sensitive and Selective Room-Temperature $NO_2$ Gas Sensor Based on Bilayer Transferred Chemical Vapor Deposited Graphene," Appl. Surf. Sci., 404 357-63 (2017) https://doi.org/10.1016/j.apsusc.2017.01.286
  19. S. Ju, J. M. Lee, Y. Jung, E. Lee, W. Lee, and S. J. Kim, "Highly Sensitive Hydrogen Gas Sensors Using Single-Walled Carbon Nanotubes Grafted with Pd Nanoparticles," Sens. Actuators B: Chem., 146 122-8 (2010) https://doi.org/10.1016/j.snb.2010.01.055
  20. K. H. Lee, V. Scardaci, H. Y. Kim, T. Hallam, H. Nolan, and B. E. Bolf, "Highly Sensitive, Transparent, and Flexible Gas Sensors Based on Gold Nanoparticle decorated Carbon Nanotubes," Sens. Actuators B: Chem., 188 571-5 (2013) https://doi.org/10.1016/j.snb.2013.07.048
  21. S. Mao, S. M. Cui, K. H. Yu, Z. H. Wen, G. H. Lu, and J. H. Chen, "Ultrafast Hydrogen Sensing through Hybrids of Semiconducting Single-Walled Carbon Nanotubes and Tin Oxide Nanocrystals," Nanoscale, 4 1275-9 (2012) https://doi.org/10.1039/c2nr11765g
  22. A. Sharma, M. Tomar, and V. Gupta, "Room Temperature Trace Level Detection of $NO_2$ Gas Using $SnO_2$ Modified Carbon Nanotubes Based sensor," J. Mater. Chem., 22 23608-16 (2012) https://doi.org/10.1039/c2jm35172b
  23. D. Z. Zhang. Y. E. Sun, and Y. Zhang, "Fabrication and Characterization of Layer-by-Layer Nano Self- Assembled ZnO Nanorods/Carbon Nanotube Film for Ethanol Gas Sensing Application at Room Temperature," J. Mater. Sci., 26 7445-51 (2015)
  24. G. P. Evans, M. J. Powell, I. D. Johnson, D. P. Howard, D. Bauer, and J. A. Darr, "Room Temperature Vanadium Dioxide-Carbon Nanotube Gas Sensors Made via Continuous Hydrothermal Flow Synthesis," Sens. Actuators B: Chem., 255 1119-29 (2018) https://doi.org/10.1016/j.snb.2017.07.152
  25. J. L. Johnson. A. Behnam, S. J. Pearton, and A. Ural, "Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks" Adv. Mater., 22 4877-80 (2010) https://doi.org/10.1002/adma.201001798
  26. R. Kumar, d. Varandani, B. R. Mehta, V. N. Singh, Z. H. Wen, and X. I. Feng, "Fast Response and Recovery of Hydrogen Sensing in Pd-Pt Nanoparticle-Graphene Composite Layer," Nanotechnology, 22 275719 (2011) https://doi.org/10.1088/0957-4484/22/27/275719
  27. A. Esfandiar, A. Irajizad, O. Akhavan, S. Ghasemi, and M. R. Gholami, "Pd-$WO_3$/Reduced Graphene Oxide Hierarchical Nanostructures as Efficient Hydrogen Gas Sensors," Int. J. Hydrogen Energy, 39 8169-79 (2014) https://doi.org/10.1016/j.ijhydene.2014.03.117
  28. Z. M. Ao, J. Yang, S. Li, and Q. Jiang, "Enhancement of CO Detection in Al doped Graphene," Chem. Phys. Lett., 461 276-9 (2008) https://doi.org/10.1016/j.cplett.2008.07.039
  29. L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, s. Xu, L. Shen, Q. Chen, and W. Shi, "Fully Printed, Rapid- Response Sensors Based on Chemically Modified Graphene for Detecting $NO_2$ at Room Temperature," ACS Appl. Mater. Interfaces, 6 7426-33 (2014) https://doi.org/10.1021/am500843p
  30. S.-W. Choi, B.-M. Kim, S.-H. Oh, and Y. T. Byun, "Selective Detection of Chlorine at Room Temperature Utilizing Single-Walled Carbon Nanotubes Functionalized with Platinum Nanoparticles Synthesized via Ultraviolet Irradiation," Sens. Actuators B: Chem., 243 414-22 (2017)
  31. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual $SnO_2$ Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano Lett., 5 [4] 667-73 (2005) https://doi.org/10.1021/nl050082v
  32. Y.-M. Jo, C.-S. Lee, R. Wang, J.-S. Park, and J.-H. Lee, "Highly Sensitive and Selective Ethanol Sensors Using Magnesium doped Indium Oxide Hollow Sphere," J. Korean Ceram. Soc., 54 [4] 303-7 (2017) https://doi.org/10.4191/kcers.2017.54.4.01
  33. Z. U. Abideen, J.-H. Kim, J.-H. Lee, J.-Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review," J. Korean Ceram. Soc., 54 [5] 366-79 (2017) https://doi.org/10.4191/kcers.2017.54.5.12
  34. G. Lu, L. E. Ocola, and J. Chen, "Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes," Adv. Mater., 21 2487-91 (2009) https://doi.org/10.1002/adma.200803536
  35. B. Zhang, M. Cheng, G. Liu, Y. Gao, L. Zhao, S. Li, Y. Wang, F. Liu, X. Liang, T. Zhang, and G. Lu, "Room Temperature $NO_2$ Gas Sensor Based on Porous $Co_3O_4$ Slices/Reduced Graphene Oxide hybrid," Sens. Actuators B: Chem., 263 387-99 (2018) https://doi.org/10.1016/j.snb.2018.02.117
  36. Y. Seekaew, A. Wisitsoraat, D. Phokharatkul, and C. Wongchoosuk, "Room Temperature Toluene Gas Sensor Based on $TiO_2$ Nanoparticles Decorated 3D Graphene-Carbon Nanotube Nanostructures," Sens. Actuators B: Chem., 279 69-78 (2019) https://doi.org/10.1016/j.snb.2018.09.095
  37. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, V. Meunier, "Evaluating the Characteristics of Multiwall Carbon Nanotubes," Carbon, 49 2581-602 (2011) https://doi.org/10.1016/j.carbon.2011.03.028
  38. A. Salehi-Khojin, D. Estrada, K. Y. Lin, M.-H. Bae, F. Xiong, E. Pop, and R. I. Masel, "Polycrystalline Graphene Ribbons as Chemiresistors," Adv. Mater., 24 53-57 (2012) https://doi.org/10.1002/adma.201102663
  39. D. H. Wang, Y. Hu, J. J. Zhao, L. L Zeng, X. M. Tao, and W. Chen, "Holey Reduced Graphene Oxide Nanosheets for High Performance Room Temperature Gas Sensing," J. Mater. Chem. A, 2 17415-20 (2014) https://doi.org/10.1039/C4TA03740E
  40. Y. R. Choi, Y.-G. Yoon, K. S. Choi, J. H. Kang, Y.-S. Shim, Y. H. Kim, H. J. Chang, J.-H. Lee, C. R. Park, S. Y. Kim, and H. W. Jang, "Role of Oxygen Functional Groups in Graphene Oxide for Reversible Room-Temperature $NO_2$ Sensing," Carbon, 91 178-87 (2015) https://doi.org/10.1016/j.carbon.2015.04.082
  41. J. Kim, S.-W. Choi, J.-H. Lee, Y. Chung, and Y. T. Byun, "Gas Sensing Properties of Defect-Induced Single-Walled Carbon Nanotubes," Sens. Actuators B: Chem., 228 688-92 (2016) https://doi.org/10.1016/j.snb.2016.01.094
  42. V. R. Khalap, T. Sheps, A. A. Kane, and P. G. Collins, "Hydrogen Sensing and Sensitivity of Palladium-Decorated Single-Walled Carbon Nanotubes with Defects," Nano Lett., 10 896-901 (2010) https://doi.org/10.1021/nl9036092
  43. Y. Byoun, S. Park, C. Jin, Y.-J. Song, and S.-W. Choi, "Highly Sensitive and Selective Ethanol Detection at Room Temperature Utilizing Holey SWCNT-Sn/$SnO_2$ Nanocomposites Synthesized by Microwave Irradiation," Sens. Actuators B: Chem., In press