References
-
Ye, M., Winslow, D., Zhang, D., Pandey, R. & Yap, Y. Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (
$MoS_2$ ) Thin Films. Photonics 2, 288-307 (2015). https://doi.org/10.3390/photonics2010288 - Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263-275 (2013). https://doi.org/10.1038/nchem.1589
- Gmitra, M., Kochan, D., Hogl, P. & Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 93, 155104 (2016). https://doi.org/10.1103/physrevb.93.155104
- Savero Torres, W. et al. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures. 2D Mater. 4, 041008 (2017). https://doi.org/10.1088/2053-1583/aa8823
- Avsar, A. et al. Spin-orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014). https://doi.org/10.1038/ncomms5875
- Ashcroft, N. W. & Mermin, N. D. Solid State Physics. in Solid State Physics iii (Elsevier, 1976).
- Stefan Hufner. Photoelectron Spectroscopy: Principles and Applications. (Springer, 1995).
- Ly, T. H. et al. Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides. ACS Nano 8, 11401-11408 (2014). https://doi.org/10.1021/nn504470q
- Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355-359 (2018). https://doi.org/10.1038/s41586-018-0008-3
- Li, B. et al. Solid-Vapor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. Angew. Chemie Int. Ed. 55, 10656-10661 (2016). https://doi.org/10.1002/anie.201604445
- Park, S. et al. Electronic band dispersion determination in azimuthally disordered transition-metal dichalcogenide monolayers. Commun. Phys. 2, 68 (2019). https://doi.org/10.1038/s42005-019-0166-0
- Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012). https://doi.org/10.1103/physrevb.86.115409
- Zhou, S. Y. et al. Coexistence of sharp quasiparticle dispersions and disorder features in graphite. Phys. Rev. B 71, 161403 (2005). https://doi.org/10.1103/physrevb.71.161403
-
Park, S. et al. Direct determination of monolayer
$MoS_2$ and$WSe_2$ exciton binding energies on insulating and metallic substrates. 2D Mater. 5, 025003 (2018). https://doi.org/10.1088/2053-1583/aaa4ca -
Zhu, B., Chen, X. & Cui, X. Exciton Binding Energy of Monolayer
$WS_2$ . Sci. Rep. 5, 9218 (2015). https://doi.org/10.1038/srep09218 -
Chernikov, A. et al. Electrical Tuning of Exciton Binding Energies in Monolayer
$WS_2$ Phys. Rev. Lett. 115, 126802 (2015). https://doi.org/10.1103/PhysRevLett.115.126802 - Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794-2800 (2015). https://doi.org/10.1021/nl503799t
- Park, S. et al. Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS2 and molecular dopants. Commun. Phys. 2, 109 (2019). https://doi.org/10.1038/s42005-019-0212-y
-
Cheng, Y. C., Zhu, Z. Y., Mi, W. B., Guo, Z. B. & Schwingenschlogl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer
$MoS_2$ systems. Phys. Rev. B 87, 100401 (2013). https://doi.org/10.1103/physrevb.87.100401 -
Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A. & Chauhan, Y. S. Doping Strategies for Monolayer
$MoS_2$ via Surface Adsorption: A Systematic Study. J. Phys. Chem. C 118, 30309-30314 (2014). https://doi.org/10.1021/jp510662n -
Dolui, K., Rungger, I., Das Pemmaraju, C. & Sanvito, S. Possible doping strategies for
$MoS_2$ monolayers: An ab initio study. Phys. Rev. B 88, 075420 (2013). https://doi.org/10.1103/physrevb.88.075420 -
Du, Y., Liu, H., Neal, A. T., Si, M. & Ye, P. D. Molecular doping of multilayer
$Mos_2$ field-effect transistors: Reduction in sheet and contact resistances. IEEE Electron Device Lett. 34, 1328-1330 (2013). https://doi.org/10.1109/LED.2013.2277311