DOI QR코드

DOI QR Code

Investigation on 2D Transition Metal Chalcogenide Using Angular-Resolved Photoelectron Spectroscopy

각도분해 광전자 분광법을 이용한 2차원 전이금속 칼코겐 화합물의 전자구조 연구

  • Received : 2019.12.09
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

Recently, transition metal dichalcogenide (TMDC) monolayers have been the subject of research exploring the physical phenomenon generated by low dimensionality and high symmetry. One of the keys to understanding new physical observations is the electronic band structure of 2D TMDCs. Angle-resolved photoelectron spectroscopy (ARPES) is, to this point, the best technique for obtaining information on the electronic structure of 2D TMDCs. However, through ARPES research, obtaining the long-range well-ordered single crystal samples always proves a challenging and obstacle presenting issue, which has been limiting towards measuring the electronic band structures of samples. This is particularly true in general 2D TMDCs cases. Here, we introduce the approach, with a mathematical framework, to overcome such ARPES limitations by employing the high level of symmetry of 2D TMDCs. Their high symmetry enables measurement of the clear and sharp electronic band dispersion, which is dominated by the band dispersion of single-crystal TMDCs along the two high symmetry directions Γ-K and Γ-M. In addition, we present two important studies and observations for the direct measuring of the exciton binding energy and charge transfer of 2D TMDCs, both being established by the above novel approach.

Keywords

References

  1. Ye, M., Winslow, D., Zhang, D., Pandey, R. & Yap, Y. Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide ($MoS_2$) Thin Films. Photonics 2, 288-307 (2015). https://doi.org/10.3390/photonics2010288
  2. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263-275 (2013). https://doi.org/10.1038/nchem.1589
  3. Gmitra, M., Kochan, D., Hogl, P. & Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 93, 155104 (2016). https://doi.org/10.1103/physrevb.93.155104
  4. Savero Torres, W. et al. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures. 2D Mater. 4, 041008 (2017). https://doi.org/10.1088/2053-1583/aa8823
  5. Avsar, A. et al. Spin-orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014). https://doi.org/10.1038/ncomms5875
  6. Ashcroft, N. W. & Mermin, N. D. Solid State Physics. in Solid State Physics iii (Elsevier, 1976).
  7. Stefan Hufner. Photoelectron Spectroscopy: Principles and Applications. (Springer, 1995).
  8. Ly, T. H. et al. Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides. ACS Nano 8, 11401-11408 (2014). https://doi.org/10.1021/nn504470q
  9. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355-359 (2018). https://doi.org/10.1038/s41586-018-0008-3
  10. Li, B. et al. Solid-Vapor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. Angew. Chemie Int. Ed. 55, 10656-10661 (2016). https://doi.org/10.1002/anie.201604445
  11. Park, S. et al. Electronic band dispersion determination in azimuthally disordered transition-metal dichalcogenide monolayers. Commun. Phys. 2, 68 (2019). https://doi.org/10.1038/s42005-019-0166-0
  12. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012). https://doi.org/10.1103/physrevb.86.115409
  13. Zhou, S. Y. et al. Coexistence of sharp quasiparticle dispersions and disorder features in graphite. Phys. Rev. B 71, 161403 (2005). https://doi.org/10.1103/physrevb.71.161403
  14. Park, S. et al. Direct determination of monolayer $MoS_2$ and $WSe_2$ exciton binding energies on insulating and metallic substrates. 2D Mater. 5, 025003 (2018). https://doi.org/10.1088/2053-1583/aaa4ca
  15. Zhu, B., Chen, X. & Cui, X. Exciton Binding Energy of Monolayer $WS_2$. Sci. Rep. 5, 9218 (2015). https://doi.org/10.1038/srep09218
  16. Chernikov, A. et al. Electrical Tuning of Exciton Binding Energies in Monolayer $WS_2$ Phys. Rev. Lett. 115, 126802 (2015). https://doi.org/10.1103/PhysRevLett.115.126802
  17. Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794-2800 (2015). https://doi.org/10.1021/nl503799t
  18. Park, S. et al. Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS2 and molecular dopants. Commun. Phys. 2, 109 (2019). https://doi.org/10.1038/s42005-019-0212-y
  19. Cheng, Y. C., Zhu, Z. Y., Mi, W. B., Guo, Z. B. & Schwingenschlogl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer $MoS_2$ systems. Phys. Rev. B 87, 100401 (2013). https://doi.org/10.1103/physrevb.87.100401
  20. Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A. & Chauhan, Y. S. Doping Strategies for Monolayer $MoS_2$ via Surface Adsorption: A Systematic Study. J. Phys. Chem. C 118, 30309-30314 (2014). https://doi.org/10.1021/jp510662n
  21. Dolui, K., Rungger, I., Das Pemmaraju, C. & Sanvito, S. Possible doping strategies for $MoS_2$ monolayers: An ab initio study. Phys. Rev. B 88, 075420 (2013). https://doi.org/10.1103/physrevb.88.075420
  22. Du, Y., Liu, H., Neal, A. T., Si, M. & Ye, P. D. Molecular doping of multilayer $Mos_2$ field-effect transistors: Reduction in sheet and contact resistances. IEEE Electron Device Lett. 34, 1328-1330 (2013). https://doi.org/10.1109/LED.2013.2277311