Acknowledgement
This work was supported by 2019 Hannam University Research Fund.
References
- M.Braun, An algebraic interpretation of the q-binomial coefficients, International Electronic Journal of Algebra, 6 (2009), 23-30.
- W. Guo, Y.J. Lin, Y. Liu, and C. Zhang, A q-analogue of Zhang's binomial coefficient identities, Discrete Math., 309 (2009), 5913-5919. https://doi.org/10.1016/j.disc.2009.04.008
- W. Guo and C. Krattenthaler, Some divisibility properties of binomial and q-binomial coefficients, J. Number theory, 135 (2014), 167-184. https://doi.org/10.1016/j.jnt.2013.08.012
- M.E. Horn, Pascal Pyramids, Pascal Hyper-Pyramids and a Bilateral Multinomial Theorem, arXiv:0311.035 [math.GM], 2003.
- M.E. Horn, Pauli Pascal Pyramids, Pauli Fibonacci Numbers, and Pauli Jacob-sthal Numbers, arXiv:0711.4030 [math.GM], 2007.
- C.H. Jones, Generalized hockey stick identity and N-dimensional blockwalking, Fibonacci Quarterly, 34 (1994), 280-288.
- T.H. Koornwinder, Special functions and q-commuting variables, in Special Functions, q-Series and Related Topics, M. Ismail, D. Masson, M. Rahman (eds.), Fields Institute Communications 14, Amer. Math. Soc. (1997), 131-166.
- W. Pauli, The In uence of Archetypal Ideas on the Scientific Theories of Kepler, in: The Interpretation of Nature and the Psyche, Series LI, Pantheon Books, New York (1955), reprint in: W. Pauli: Writings on Physics and Philosophy, C. Enz, K. Meyenn (eds.), Springer, New York (1994), 218-279.
Cited by
- Sequential Properties over Negative Pauli Pascal Table vol.2020, 2019, https://doi.org/10.1155/2020/3805462