DOI QR코드

DOI QR Code

LIPSCHITZ MAPPINGS IN METRIC-LIKE SPACES

  • Jeon, Young Ju (Department of Mathematics Education, College of Education, ChonBuk National University) ;
  • Kim, Chang Il (Department of Mathematics Education Dankook University)
  • Received : 2019.05.14
  • Accepted : 2019.08.14
  • Published : 2019.11.15

Abstract

Pajoohesh introduced the concept of k-metric spaces and Hiltzler and Seda defined the concept of metric-like spaces. Recently, Kopperman and Pajoohesh proved a fixed point theorem in complete k-metric spaces for a Lipschitz map with bound. In this paper, we prove a fixed point theorem in complete metric-like spaces for a Lipschitz map with bound.

Keywords

References

  1. C. T. Aage and J. N. Salunke, The results of fixed points in dislocated quasimetric space, Appl. Math. Sci., 59 (2008), 2941-2948.
  2. H. H. Alsulami, E. Karapinar, and H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct. Spaces, 2015 (2015), 1-9.
  3. A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory and Appl., 2012 (2012), 1-10. https://doi.org/10.1186/1687-1812-2012-1
  4. R. D. Daheriya, R. Jain, and M. Ughade, Some fixed point theorem for expansive type mapping in dislocated metric space, ISRN Math. Anal., 2012 (2012), 1-5.
  5. P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 37.
  6. A. Isufati, Fixed point theorems in dislocated quasi-metric space, Appl. Math. Sci. (Ruse), 5 (2010), 217-233.
  7. R. Kopperman and H. Pajoohesh, Generalizations of metric and partial metrics, Hacettepe Journal of mathematics and statistics, 46 (2017), no. 1, 9-14.
  8. S. G. Matthews, Partial metric topology, Paper on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., Now York, 728 (1994), 183-197.
  9. H. Pajoohesh, k-metric spaces, Algebra Universalis, 69 (2013), 27-43. https://doi.org/10.1007/s00012-012-0218-8