DOI QR코드

DOI QR Code

Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury

  • Yuan Meng Yu (Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University) ;
  • Qian Qian Ni (Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University) ;
  • Zhen Jane Wang (Department of Radiology and Biomedical Imaging, University of California San Francisco) ;
  • Meng Lin Chen (Medical Imaging Teaching and Research Office, Nanfang Hospital, Southern Medical University) ;
  • Long Jiang Zhang (Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University)
  • Received : 2018.08.08
  • Accepted : 2018.12.19
  • Published : 2019.06.01

Abstract

Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.

Keywords

References

  1. Cavallo MC, Sepe V, Conte F, Abelli M, Ticozzelli E, Bottazzi A, et al. Cost-effectiveness of kidney transplantation from DCD in Italy. Transplant Proc 2014;46:3289-3296 https://doi.org/10.1016/j.transproceed.2014.09.146
  2. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a crosssectional survey. Lancet 2012;379:815-822 https://doi.org/10.1016/S0140-6736(12)60033-6
  3. Liu ZH. Nephrology in China. Nat Rev Nephrol 2013;9:523-528 https://doi.org/10.1038/nrneph.2013.146
  4. Aubert O, Kamar N, Vernerey D, Viglietti D, Martinez F, Duong- Van-Huyen JP, et al. Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study. BMJ 2015;351:h3557
  5. Goldberg RJ, Weng FL, Kandula P. Acute and chronic allograft dysfunction in kidney transplant recipients. Med Clin North Am 2016;100:487-503 https://doi.org/10.1016/j.mcna.2016.01.002
  6. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012;156:785-795, W-270, W-271, W-272, W-273, W-274, W-275, W-276, W-277, W-278 https://doi.org/10.7326/0003-4819-156-11-201203200-00391
  7. Moreno CC, Mittal PK, Ghonge NP, Bhargava P, Heller MT. Imaging complications of renal transplantation. Radiol Clin North Am 2016;54:235-249 https://doi.org/10.1016/j.rcl.2015.09.007
  8. Azancot MA, Moreso F, Salcedo M, Cantarell C, Perello M, Torres IB, et al. The reproducibility and predictive value on outcome of renal biopsies from expanded criteria donors. Kidney Int 2014;85:1161-1168 https://doi.org/10.1038/ki.2013.461
  9. Wang YT, Li YC, Yin LL, Pu H, Chen JY. Functional assessment of transplanted kidneys with magnetic resonance imaging. World J Radiol 2015;7:343-349 https://doi.org/10.4329/wjr.v7.i10.343
  10. Ljimani A, Wittsack HJ. Functional MRI in transplanted kidneys. Abdom Radiol (NY) 2018;43:2615-2624 https://doi.org/10.1007/s00261-018-1563-7
  11. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World J Radiol 2016;8:785-798 https://doi.org/10.4329/wjr.v8.i9.785
  12. Eisenberger U, Thoeny HC, Binser T, Gugger M, Frey FJ, Boesch C, et al. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 2010;20:1374-1383 https://doi.org/10.1007/s00330-009-1679-9
  13. Kaul A, Sharma RK, Gupta RK, Lal H, Yadav A, Bhadhuria D, et al. Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients. Saudi J Kidney Dis Transpl 2014;25:1143-1147 https://doi.org/10.4103/1319-2442.144245
  14. Thoeny HC, Zumstein D, Simon-Zoula S, Eisenberger U, De Keyzer F, Hofmann L, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006;241:812-821 https://doi.org/10.1148/radiol.2413060103
  15. Vermathen P, Binser T, Boesch C, Eisenberger U, Thoeny HC. Three-year follow-up of human transplanted kidneys by diffusion-weighted MRI and blood oxygenation level-dependent imaging. J Magn Reson Imaging 2012;35:1133-1138 https://doi.org/10.1002/jmri.23537
  16. Palmucci S, Mauro LA, Veroux P, Failla G, Milone P, Ettorre GC, et al. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys: preliminary findings. Transplant Proc 2011;43:960-966 https://doi.org/10.1016/j.transproceed.2011.01.157
  17. Palmucci S, Mauro LA, Failla G, Foti PV, Milone P, Sinagra N, et al. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys: updating results in 35 patients. Transplant Proc 2012;44:1884-1888 https://doi.org/10.1016/j.transproceed.2012.06.045
  18. Eisenberger U, Binser T, Thoeny HC, Boesch C, Frey FJ, Vermathen P. Living renal allograft transplantation: diffusionweighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology 2014;270:800-808 https://doi.org/10.1148/radiol.13122588
  19. Kuai ZX, Liu WY, Zhu YM. Effect of multiple perfusion components on pseudo-diffusion coefficient in intravoxel incoherent motion imaging. Phys Med Biol 2017;62:8197-8209 https://doi.org/10.1088/1361-6560/aa8d0c
  20. Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 2011;259:25-38 https://doi.org/10.1148/radiol.10092419
  21. Xie Y, Li Y, Wen J, Li X, Zhang Z, Li J, et al. Functional evaluation of transplanted kidneys with reduced field-ofview diffusion-weighted imaging at 3T. Korean J Radiol 2018;19:201-208 https://doi.org/10.3348/kjr.2018.19.2.201
  22. Sulkowska K, Palczewski P, Wojcik D, Ciszek M, Sanko-Resmer J, Wojtowicz J, et al. Intravoxel incoherent motion imaging in monitoring the function of kidney allograft. Acta Radiol 2018 Sep 23 [Epub ahead of print]. http://doi.org/10.1177/0284185118802598
  23. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006;51:527-539 https://doi.org/10.1016/j.neuron.2006.08.012
  24. Morrell GR, Zhang JL, Lee VS. Magnetic resonance imaging of the fibrotic kidney. J Am Soc Nephrol 2017;28:2564-2570 https://doi.org/10.1681/ASN.2016101089
  25. Kido A, Kataoka M, Yamamoto A, Nakamoto Y, Umeoka S, Koyama T, et al. Diffusion tensor MRI of the kidney at 3.0 and 1.5 tesla. Acta Radiol 2010;51:1059-1063 https://doi.org/10.3109/02841851.2010.504741
  26. Notohamiprodjo M, Dietrich O, Horger W, Horng A, Helck AD, Herrmann KA, et al. Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 tesla. Invest Radiol 2010;45:245-254 https://doi.org/10.1097/RLI.0b013e3181d83abc
  27. Cheung JS, Fan SJ, Chow AM, Zhang J, Man K, Wu EX. Diffusion tensor imaging of renal ischemia reperfusion injury in an experimental model. NMR Biomed 2010;23:496-502 https://doi.org/10.1002/nbm.1486
  28. Deger E, Celik A, Dheir H, Turunc V, Yardimci A, Torun M, et al. Rejection evaluation after renal transplantation using MR diffusion tensor imaging. Acta Radiol 2018;59:876-883 https://doi.org/10.1177/0284185117733777
  29. Hueper K, Khalifa AA, Brasen JH, Vo Chieu VD, Gutberlet M, Wintterle S, et al. Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 2016;44:112-121 https://doi.org/10.1002/jmri.25158
  30. Palmucci S, Cappello G, Attina G, Foti PV, Siverino RO, Roccasalva F, et al. Diffusion weighted imaging and diffusion tensor imaging in the evaluation of transplanted kidneys. Eur J Radiol Open 2015;2:71-80 https://doi.org/10.1016/j.ejro.2015.05.001
  31. Li Y, Lee MM, Worters PW, MacKenzie JD, Laszik Z, Courtier JL. Pilot study of renal diffusion tensor imaging as a correlate to histopathology in pediatric renal allografts. AJR Am J Roentgenol 2017;208:1358-1364 https://doi.org/10.2214/AJR.16.17418
  32. Kaimori JY, Isaka Y, Hatanaka M, Yamamoto S, Ichimaru N, Fujikawa A, et al. Diffusion tensor imaging MRI with spinecho sequence and long-duration measurement for evaluation of renal fibrosis in a rat fibrosis model. Transplant Proc 2017;49:145-152 https://doi.org/10.1016/j.transproceed.2016.10.014
  33. Hueper K, Gutberlet M, Rodt T, Gwinner W, Lehner F, Wacker F, et al. Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 2011;21:2427-2433 https://doi.org/10.1007/s00330-011-2189-0
  34. Lanzman RS, Ljimani A, Pentang G, Zgoura P, Zenginli H, Kropil P, et al. Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 2013;266:218-225 https://doi.org/10.1148/radiol.12112522
  35. Fan WJ, Ren T, Li Q, Zuo PL, Long MM, Mo CB, et al. Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol 2016;26:567-575 https://doi.org/10.1007/s00330-015-3841-x
  36. Fukunaga I, Hori M, Masutani Y, Hamasaki N, Sato S, Suzuki Y, et al. Effects of diffusional kurtosis imaging parameters on diffusion quantification. Radiol Phys Technol 2013;6:343-348 https://doi.org/10.1007/s12194-013-0206-5
  37. Jensen JH, Helpern JA. MRI quantification of nongaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698-710 https://doi.org/10.1002/nbm.1518
  38. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 2010;254:876-881 https://doi.org/10.1148/radiol.09090819
  39. Giannelli M, Toschi N. On the use of trace-weighted images in body diffusional kurtosis imaging. Magn Reson Imaging 2016;34:502-507 https://doi.org/10.1016/j.mri.2015.12.013
  40. Huang Y, Chen X, Zhang Z, Yan L, Pan D, Liang C, et al. MRI quantification of non-gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study. NMR Biomed 2015;28:154-161 https://doi.org/10.1002/nbm.3235
  41. Pentang G, Lanzman RS, Heusch P, Muller-Lutz A, Blondin D, Antoch G, et al. Diffusion kurtosis imaging of the human kidney: a feasibility study. Magn Reson Imaging 2014;32:413-420 https://doi.org/10.1016/j.mri.2014.01.006
  42. Kjolby BF, Khan AR, Chuhutin A, Pedersen L, Jensen JB, Jakobsen S, et al. Fast diffusion kurtosis imaging of fibrotic mouse kidneys. NMR Biomed 2016;29:1709-1719 https://doi.org/10.1002/nbm.3623
  43. Liu Y, Zhang GM, Peng X, Wen Y, Ye W, Zheng K, et al. Diffusional kurtosis imaging in assessing renal function and pathology of IgA nephropathy: a preliminary clinical study. Clin Radiol 2018;73:818-826 https://doi.org/10.1016/j.crad.2018.05.012
  44. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 2010;298:F1078-F1094 https://doi.org/10.1152/ajprenal.00017.2010
  45. Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am 2008;16:613-625 https://doi.org/10.1016/j.mric.2008.07.008
  46. Malvezzi P, Bricault I, Terrier N, Bayle F. Evaluation of intrarenal oxygenation by blood oxygen level-dependent magnetic resonance imaging in living kidney donors and their recipients: preliminary results. Transplant Proc 2009;41:641-644 https://doi.org/10.1016/j.transproceed.2008.12.012
  47. Oostendorp M, de Vries EE, Slenter JM, Peutz-Kootstra CJ, Snoeijs MG, Post MJ, et al. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury. NMR Biomed 2011;24:194-200 https://doi.org/10.1002/nbm.1572
  48. Niles DJ, Artz NS, Djamali A, Sadowski EA, Grist TM, Fain SB. Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using arterial spin labeling and blood oxygen level-dependent magnetic resonance imaging. Invest Radiol 2016;51:113-120 https://doi.org/10.1097/RLI.0000000000000210
  49. Sadowski EA, Fain SB, Alford SK, Korosec FR, Fine J, Muehrer R, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 2005;236:911-919 https://doi.org/10.1148/radiol.2363041080
  50. Han F, Xiao W, Xu Y, Wu J, Wang Q, Wang H, et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant 2008;23:2666-2672 https://doi.org/10.1093/ndt/gfn064
  51. Park SY, Kim CK, Park BK, Huh W, Kim SJ, Kim B. Evaluation of transplanted kidneys using blood oxygenation leveldependent MRI at 3 T: a preliminary study. AJR Am J Roentgenol 2012;198:1108-1114 https://doi.org/10.2214/AJR.11.7253
  52. Park SY, Kim CK, Park BK, Kim SJ, Lee S, Huh W. Assessment of early renal allograft dysfunction with blood oxygenation level-dependent MRI and diffusion-weighted imaging. Eur J Radiol 2014;83:2114-2121 https://doi.org/10.1016/j.ejrad.2014.09.017
  53. Djamali A, Sadowski EA, Muehrer RJ, Reese S, Smavatkul C, Vidyasagar A, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 2007;292:F513-F522 https://doi.org/10.1152/ajprenal.00222.2006
  54. Seif M, Eisenberger U, Binser T, Thoeny HC, Krauer F, Rusch A, et al. Renal blood oxygenation level-dependent imaging in longitudinal follow-up of donated and remaining kidneys. Radiology 2016;279:795-804 https://doi.org/10.1148/radiol.2015150370
  55. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadoliniumbased MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007;242:647-649 https://doi.org/10.1148/radiol.2423061640
  56. Guo BJ, Yang ZL, Zhang LJ. Gadolinium deposition in brain: current scientific evidence and future perspectives. Front Mol Neurosci 2018;11:335
  57. Boyken J, Niendorf T, Flemming B, Seeliger E. Gadolinium deposition in the brain after contrast-enhanced MRI: are the data valid? Radiology 2018;288:630-632 https://doi.org/10.1148/radiol.2018171762
  58. Ho ML. Arterial spin labeling: clinical applications. J Neuroradiol 2018;45:276-289 https://doi.org/10.1016/j.neurad.2018.06.003
  59. Havsteen I, Damm Nybing J, Christensen H, Christensen AF. Arterial spin labeling: a technical overview. Acta Radiol 2018;59:1232-1238 https://doi.org/10.1177/0284185117752552
  60. Sadowski EA, Djamali A, Wentland AL, Muehrer R, Becker BN, Grist TM, et al. Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 2010;28:56-64 https://doi.org/10.1016/j.mri.2009.05.044
  61. Lanzman RS, Wittsack HJ, Martirosian P, Zgoura P, Bilk P, Kropil P, et al. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 2010;20:1485-1491 https://doi.org/10.1007/s00330-009-1675-0
  62. Artz NS, Sadowski EA, Wentland AL, Djamali A, Grist TM, Seo S, et al. Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging 2011;33:1414-1421 https://doi.org/10.1002/jmri.22552
  63. Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A, et al. Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 2011;29:74-82 https://doi.org/10.1016/j.mri.2010.07.018
  64. Heusch P, Wittsack HJ, Blondin D, Ljimani A, Nguyen-Quang M, Martirosian P, et al. Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 2014;40:84-89 https://doi.org/10.1002/jmri.24336
  65. Hueper K, Gueler F, Brasen JH, Gutberlet M, Jang MS, Lehner F, et al. Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol 2015;308:F1444-F1451 https://doi.org/10.1152/ajprenal.00064.2015
  66. Hueper K, Schmidbauer M, Thorenz A, Brasen JH, Gutberlet M, Mengel M, et al. Longitudinal evaluation of perfusion changes in acute and chronic renal allograft rejection using arterial spin labeling in translational mouse models. J Magn Reson Imaging 2017;46:1664-1672 https://doi.org/10.1002/jmri.25713
  67. Heusch P, Wittsack HJ, Heusner T, Buchbender C, Quang MN, Martirosian P, et al. Correlation of biexponential diffusion parameters with arterial spin-labeling perfusion MRI: results in transplanted kidneys. Invest Radiol 2013;48:140-144 https://doi.org/10.1097/RLI.0b013e318277bfe3
  68. Ren T, Wen CL, Chen LH, Xie SS, Cheng Y, Fu YX, et al. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging 2016;34:908-914 https://doi.org/10.1016/j.mri.2016.04.022
  69. Strupler M, Hernest M, Fligny C, Martin JL, Tharaux PL, Schanne-Klein MC. Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling. J Biomed Opt 2008;13:054041
  70. Park WD, Griffin MD, Cornell LD, Cosio FG, Stegall MD. Fibrosis with inflammation at one year predicts transplant functional decline. J Am Soc Nephrol 2010;21:1987-1997 https://doi.org/10.1681/ASN.2010010049
  71. Costa JS, Alves R, Sousa V, Marinho C, Romaozinho C, Santos L, et al. Fibrogenesis in kidney transplant: dysfunction progress biomarkers. Transplant Proc 2017;49:787-791 https://doi.org/10.1016/j.transproceed.2017.01.063
  72. Yin M, Kolipaka A, Woodrum DA, Glaser KJ, Romano AJ, Manduca A, et al. Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model. J Magn Reson Imaging 2013;38:809-815 https://doi.org/10.1002/jmri.24049
  73. Jiang X, Asbach P, Streitberger KJ, Thomas A, Hamm B, Braun J, et al. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix. Eur Radiol 2014;24:3025-3033 https://doi.org/10.1007/s00330-014-3305-8
  74. Dittmann F, Hirsch S, Tzschatzsch H, Guo J, Braun J, Sack I. In vivo wideband multifrequency MR elastography of the human brain and liver. Magn Reson Med 2016;76:1116-1126 https://doi.org/10.1002/mrm.26006
  75. Hiscox LV, Johnson CL, Barnhill E, McGarry MD, Huston J, van Beek EJ, et al. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Phys Med Biol 2016;61:R401-R437 https://doi.org/10.1088/0031-9155/61/24/R401
  76. Lee CU, Glockner JF, Glaser KJ, Yin M, Chen J, Kawashima A, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol 2012;19:834-841 https://doi.org/10.1016/j.acra.2012.03.003
  77. Marticorena Garcia SR, Fischer T, Durr M, Gultekin E, Braun J, Sack I, et al. Multifrequency magnetic resonance elastography for the assessment of renal allograft function. Invest Radiol 2016;51:591-595 https://doi.org/10.1097/RLI.0000000000000271
  78. Kirpalani A, Hashim E, Leung G, Kim JK, Krizova A, Jothy S, et al. Magnetic resonance elastography to assess fibrosis in kidney allografts. Clin J Am Soc Nephrol 2017;12:1671-1679 https://doi.org/10.2215/CJN.01830217
  79. Martens MH, Lambregts DM, Papanikolaou N, Heijnen LA, Riedl RG, zur Hausen A, et al. Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer. Invest Radiol 2014;49:29-34 https://doi.org/10.1097/RLI.0b013e3182a3459b
  80. Kline TL, Irazabal MV, Ebrahimi B, Hopp K, Udoji KN, Warner JD, et al. Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 2016;75:1466-1473 https://doi.org/10.1002/mrm.25701
  81. Wang F, Jiang R, Takahashi K, Gore J, Harris RC, Takahashi T, et al. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging. Magn Reson Imaging 2014;32:1125-1132 https://doi.org/10.1016/j.mri.2014.07.012
  82. Jiang K, Ferguson CM, Ebrahimi B, Tang H, Kline TL, Burningham TA, et al. Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology 2017;283:77-86 https://doi.org/10.1148/radiol.2016160566
  83. Jiang K, Ferguson CM, Woollard JR, Zhu X, Lerman LO. Magnetization transfer magnetic resonance imaging noninvasively detects renal fibrosis in swine atherosclerotic renal artery stenosis at 3.0 T. Invest Radiol 2017;52:686-692 https://doi.org/10.1097/RLI.0000000000000390