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INTRODUCTION

Since 1988, when gadolinium-based contrast agents 
(GBCAs) were approved by the Food and Drug Administration 
(FDA), GBCAs have been considered extremely safe (1). 
Life-threatening adverse reactions, which usually occur 
immediately or within 24 hours of GBCA administration, 
occur at a very low rate of 0.001–0.01% (2-4). Potentially 
lethal nephrogenic systemic fibrosis (NSF) due to GBCAs was 
first described in patients with renal failure in 2006 (5, 6). 
Subsequent research has proved that certain linear GBCAs-
gadodiamide (Omniscan; GE Healthcare AS, Oslo, Norway), 
gadoversetamide (OptiMARK; Guerbet, Raleigh, NC, USA), 
and gadopentetate dimeglumine (Magnevist; Bayer AG, 
Berlin, Germany), which have relatively unstable structures 
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and easily release free gadolinium (Gd3+)–are associated 
with the occurrence of NSF in the presence of renal failure 
(7-9). Accordingly, it is recommended to use more stable 
GBCAs and limit repeated exposure to GBCAs in patients 
with renal failure, but there are no specific limitations to 
using GBCAs in subjects with normal kidney functions (10).

Almost 8 years after the first report of NSF, incidental 
GBCA deposition in the brain was first reported by Kanda 
et al. in 2014 (11). Subsequent reports have confirmed 
the association of the repeated administration of GBCAs 
and high T1 signal intensity in the dentate nucleus and 
globus pallidus (11-30). Despite the increasing evidence of 
GBCA accumulation in the brain, there is no strong clinical 
evidence for the harmful effects of GBCAs on the brain. The 
underlying pathomechanisms of GBCA accumulation in the 
brain are not clearly known yet. Nevertheless, regulatory 
actions on GBCAs have been changed recently. The U.S. 
FDA decided not to restrict the use of any of the GBCAs–
including certain GBCAs that are associated with a higher 
retention of gadolinium in the brain–based on a lack of 
evidence for the harmful effects of retained gadolinium 
on the brain (31). However, the European Medicines 
Agency’s the Pharmacovigilance and Risk Assessment 
Committee has recommended the suspension of marketing 
authorizations for four linear gadolinium contrast agents–
gadobenate dimeglumine (MultiHance; Bracco Imaging 
S.p.A., Milan, Italy), gadodiamide, gadopentetate 
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dimeglumine, and gadoversetamide–based on the evidence 
of their accumulation in the brain (32, 33). The Japanese 
Pharmaceuticals and Medical Devices Agency has requested 
specific changes to the labeling regarding precautions 
about gadolinium retention in the brain in the packages of 
all GBCAs (34). In line with this, the Ministry of Food and 
Drug Safety in Korea has requested a mandatory revision 
of the precaution section in the package insert of GBCAs 
to state that more gadolinium remains in the brain with 
the use of linear GBCAs than with the use of macrocyclic 
GBCAs. Therefore, linear GBCAs should be administered 
when macrocyclic GBCAs are not appropriate, such as for 
patients with previous allergic reactions to macrocyclic 
GBCAs or when other alternatives for liver-specific agents 
(e.g., gadoxetic acid disodium: Primovist; Bayer AG) are not 
available (35, 36). 

Despite this series of actions by healthcare policymakers, 
public concerns continue to increase, and a certain 
group of researchers has even proposed a new disease 
category linked to GBCA deposition in the brain (37). 
Thus, radiologists and clinicians are feeling pressured to 
understand the significance of GBCA accumulation in the 
brain as the recent evidence suggests. They also have 
to educate their potential patients without provoking 
groundless fears about GBCAs, as well as change their 
practice according to the evidence and recommendations 
to avoid certain types of GBCAs. In this review article, we 
summarize the current knowledge on GBCA deposition in 
the brain with respect to the types of GBCAs, deposition 
sites, deposition mechanisms, and clinical implications. 

What Exactly are GBCAs? Types and 
Characteristics 

Gadolinium is a rare earth heavy metal in the lanthanide 
series, with an atomic number of 64. The 7 unpaired 
electrons in its 4f subshell enable gadolinium to induce 
a strong paramagnetic effect, which accounts for its use 
for contrast enhancement in MRI. Free gadolinium, Gd3+, 
is toxic to humans; therefore, GBCAs are administered to 
humans in the chelated forms with various ligands to avoid 
the toxic effects of free gadolinium on the human body (38). 
The gadolinium in GBCAs must remain in the chelated form 
until their excretion by the kidneys. However, dechelation 
of free gadolinium from the GBCA complex appears to 
occur in vivo and is determined by various factors, such as 
the chemical stability of the GBCAs, pH, temperature, and 

competition between GBCAs and ions or ligands (39). 
The chemical stability related to the dechelation of free 

gadolinium from the GBCA complex is determined by both 
kinetic stability (which is also called kinetic inertness) and 
thermodynamic stability (40). Kinetic stability refers to how 
slow the rates of formation and dissociation of the GBCA 
complex are. The kinetic stability of GBCA is considered 
much more important than its thermodynamic stability 
in maintaining the in vivo stability (40). If the kinetic 
stability is low, free gadolinium is rapidly released from 
the GBCA complex. The thermodynamic stability determines 
the concentration of free gadolinium, free chelate, and the 
GBCA complex at equilibrium. The thermodynamic stability 
at the physiologic pH of 7.4 is termed conditional stability 
(39). In addition, the dechelation of free gadolinium 
from the GBCA complex is also influenced by the potent 
acceptors of gadolinium, such as inorganic ions (phosphate, 
carbonate, hydroxide), and the potential alternatives for 
free gadolinium, such as endogenous metals (Fe3+, Mg2+, 
Cu2+, Zn2+, and Ca2+) (39, 41, 42).

Gadolinium-based contrast agents can be classified 
according to their chemical structures, electrical charges, 
stability, and biodistribution in the body, which depend 
on the type of chelating ligands (40, 43). Based on the 
structures of the chelating ligands, GBCAs can be divided 
into two categories: linear and macrocyclic. In macrocyclic 
molecules, free gadolinium is completely isolated within the 
preformed cage of the ligands, whereas in linear molecules, 
free gadolinium is wrapped around with elongated ligands. 
According to their charges, GBCAs can be subclassified 
into ionic or non-ionic agents. It is generally accepted 
that macrocyclic agents are more stable than linear agents 
due to the former’s cage-like structures; furthermore, ionic 
agents are more stable than non-ionic agents because the 
electrostatic interactions between the acidic gadolinium 
and the basic donor groups of the chelates are stronger in 
ionic agents (43, 44). 

Most GBCAs are nonspecific extracellular contrast agents. 
When injected via a vein, a GBCA will rapidly disperse 
into the extracellular space without crossing the intact 
cell membranes or biological barriers, such as the blood-
brain barrier (BBB); finally, the GBCA is excreted through 
the kidneys. Gadobenate dimeglumine (MultiHance) and 
gadoxetic acid disodium (Primovist) are well-known 
combined extracellular-intracellular agents. These agents 
are in part transported into the hepatocytes by specific 
mechanisms and excreted into the bile, thus exhibiting 
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dual elimination (bile and urine). Gadoforsteset trisodium 
(Vasovist; Lantheus Medical Imaging, North Billerica, MA, 
USA) is an intravascular blood pool agent only. After an 
intravenous injection, it binds reversibly to serum albumin, 
making large molecular complexes that restrict passive 
distribution into the interstitial space. Seven GBCAs are 
commercially available and widely used in Korea and 
throughout the world. Their brand names and general 
chemical characteristics are listed in Table 1.

How did We Realize It? A Short History on 
Gadolinium Deposition in the Brain 

High signal intensities in the globus pallidus and 
dentate nucleus on non-enhanced T1-weighted images 
(T1WI) can be observed in many clinical conditions. T1 
hyperintensities have been observed in the dentate nucleus 
in patients with calcification, history of brain irradiation, 
Langerhans cell histiocytosis, and multiple sclerosis (45-
47). T1 hyperintensities in the globus pallidus have been 
associated with hepatic dysfunction, Wilson disease, total 
parental nutrition, neurofibromatosis type 1, manganese 
toxicity, Rendu-Osler-Weber disease, hemodialysis, and 
other medical conditions that can cause calcification in 
the globus pallidus (48-50). In 2014, Kanda et al. (11) 
reported for the first time T1 hyperintensities in the globus 
pallidus and dentate nucleus on non-enhanced T1WI 
in patients with multiple exposures to GBCAs (Fig. 1). 
Currently, based on numerous published articles (Table 2), 
gadolinium deposition is one of differential diagnoses of T1 
hyperintensities in the globus pallidus and dentate nucleus. 

Early reports on gadolinium deposition in the brain 
mainly focused on signal changes in the dentate nucleus 
and globus pallidus on MRI (11-20, 22-24, 51-53). However, 
the T1 hyperintensities are not limited to these two 
structures but appear to involve other areas of the brain, 
including the pulvinar of the thalamus, the precentral and 
postcentral cortex, the calcarine cortex (54), and the whole 
cerebral cortex (28). In a study of 13 patients with > 35 
administrations of linear GBCAs, T1 hyperintensities were 
observed not only in the dentate nucleus (100%) and globus 
pallidus (100%) but also in the substantia nigra (100%), 
posterior thalamus (92%), red nucleus (77%), colliculi (77%), 
superior cerebellar peduncle (54%), caudate nucleus (31%), 
whole thalamus (23%), and putamen (15%) (30). 

McDonald et al. (55) confirmed the causal relationship 
between T1 hyperintensities and gadolinium exposure by Ta
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demonstrating that T1 hyperintensity is positively correlated 
with the concentration of gadolinium in the brain tissue, 
measured by inductively coupled plasma mass spectrometry 
(ICP-MS) in a cadaveric study. Gadolinium deposition was 
observed in the pons and thalamus in addition to the 
observations in the globus pallidus and dentate nucleus (55, 
56). Kanda et al. (57) also found gadolinium deposition 
in the cerebellar white matter, frontal lobe cortex, and 
frontal white matter in an autopsy study involving subjects 
without severe renal dysfunction. These autopsy studies 
have demonstrated that gadolinium deposition can occur 
anywhere in the brain tissue, not only in the dentate 
nucleus and globus pallidus, and that MRI has a limited 
sensitivity to detect low levels of gadolinium deposition in 
the brain. 

How does GBCA Deposit in the Brain? 
Histologic Evidence and Suggested Mechanisms 

Although imaging evidence of GBCA in the brain is 
clear, histological and electromicroscopic observations are 
not straightforward. According to preclinical studies and 
the few available human autopsy studies, no histological 
changes have been detected in hematoxylin and eosin-
stained sections of the dentate nucleus and globus pallidus 
from rats and patients administered gadodiamide (linear 
GBCA) (55, 58, 59). In a few studies, electromicroscopic 
examination showed gadolinium deposition in the neuronal 

tissue, but these studies did not specify the affected cells 
(55, 60). A recent electromicroscopic observation of the 
rodent brain revealed that gadolinium-positive, highly 
electron-dense structures could be detected only in the 
endothelial walls of several microvessels in the brain, 
but not in neurons, neutrophils, or other glial cells (58). 
Although further studies may be needed to explore the 
target cells for gadolinium deposition in the brain, these 
findings raise the possibility that gadolinium itself may not 
pass through an intact BBB. 

The chemical form of deposited gadolinium in brain 
tissue was discovered in rodent brain studies by Gianolio 
et al. (61) and Frenzel et al. (62). Gianolio et al. (61) 
quantified the total amount of gadolinium in the rat brain, 
as well as the amount of intact GBCA and the insoluble 
gadolinium-containing form, after repeated injections of 
macrocyclic and linear GBCAs. The authors found that, three 
days after the final GBCA administration, macrocyclic GBCA 
administration resulted in the exclusive presence of intact 
GBCA in the brain. With regard to linear GBCAs, the retained 
gadolinium was 10 times higher than macrocyclic GBCAs and 
was found mostly commonly in the insoluble form, followed 
by soluble macromolecules and soluble intact linear GBCAs 
(3.6–18%). In the Frenzel et al.’s study (62), soluble intact 
GBCAs (either macrocyclic or linear) were slowly excreted 
between 3 and 24 days. Frenzel et al. (62) suggested that 
the soluble gadolinium-containing macromolecules (and to 
some extent, the insoluble fraction that can freely access 

Fig. 1. Unenhanced coronal T1-turbo spin-echo images of basal ganglia in patient before (A) and after (B) five administrations 
of gadodiamide, showing signal-intensity increase in globus pallidus.

A B
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Table 2. Studies on Gadolinium Deposition in the Brain

Year Authors
GBCAs 

Investigated
GBCAs Related to 
Brain Deposition

Subjects
Numbers of Gd Admininstration

(Times [Mean])
Dose (mmol/kg/ 
Time or mL/Time)

MRI-based, human studies
2014 Kanda et al. (11) O, M O, M 19 6–12 (7.1) 7.5 mmol

2014 Errante et al. (12) O O 75 2–21 0.1 

2015 Quattrocchi et al. (51) O
O (≥ 6)

10
28
8

1 
1–5
≥ 6 

N/A

2015 Ramalho et al. (17)
O
Mu

O 
Mu

23
46

3–11 (5.0 ± 2.4)
3–11 (4.6 ± 2.2)

0.1 

2015 Adin et al. (13)
O, M, Mu, Opt, 

Pro, G
O, M, Mu, Opt, 

Pro, G
184 1–60 (14.55) N/A

2015 Kanda et al. (15)
M
Pro

M 23
36

Median: 2, max: 11
Median: 2, max: 15

0.1 

2015 Radbruch et al. (16)
M 
D

M 50
50

7.32 ± 1.83
7.06 ± 1.20

15–20 mL 
0.1 

2015 Weberling et al. (18) Mu Mu 50 5–15 (7.7 ± 3.2) 15/20 mL 

2016 Cao et al. (14)
M 
G

M 25 
25 

6–23 (12.1 ± 5.2)
6–16 (7.8 ± 2.4)

0.1 

2016 Ramalho et al. (22)
O + Mu 
Mu

O + Mu* 18
44

O: 3–11/Mu: 3–10
Mu: 3–11 

0.1
0.1

2016 Hu et al. (19) M M 21 5–37 0.1 

2016 Roberts et al. (23) M M 16 4–16 0.1 

2016 Ramalho et al. (21) O O 18 2–10 (4.78 ± 2.51) 0.1

2016 Cao et al. (95) O, M, Mu O, M, Mu 50† 1.8 ± 1 0.1

2016 Radbruch et al. (20)
M
D
G

M 36 
12 
36 

6.0 ± 1.9 
6.8 ± 1.4 
6.0 ± 1.9 

15/20 mL 
0.1 
0.1 

2016 Tanaka et al. (25) M, O M, O 27 ≥ 10 times N/A

2016 Stojanov et al. (53) G G 58 4–6 (4.74 ± 0.72) 0.1

2017 Ichikawa et al. (27)
O
Primo
Primo

O 33
33
33

5–15
1
5–15

0.1
0.025
0.025

2017 Öner et al. (29) M M 6 One intrathecal injection 0.5–1 mL 

2017 Kuno et al. (28) M M 9 1–8 N/A

2017 Zhang et al. (30) O, M, Mu O, M, Mu 13 39–59 (43 ± 5) N/A

2017 Flood et al. (26) M M 30 5.9 ± 2.7 N/A

2017 Schlemm et al. (84)
M 
G

M 49
48

1–3 (2.08)
1–3 (2.02)

20 mL
0.1 

2017 Kahn et al. (86) Primo
Primo (11–37)

32
27
32

1–4 (2.8 ± 1.14)
5–10 (6.7 ± 1.38)
11–37 (16.8 ± 6.5)

N/A

2017 Rossi Espagnet et al. (89) D D 50 6–18 (10 ± 2.8) 0.1

2018 Ryu et al. (85)
O, M 
D

O, M 41
52

3–9 (4.0 ± 1.4) 
3–9 (4.7 ± 1.5) 

0.1

2018 Kang et al.(88) G G 46 ≥ 1 (9 ± 8) 0.1

Autopsy-based human studies

2015 McDonald et al. (55) O O 13 4–29 0.1
2015 Kanda et al. (57) O, M O, M 5 2–4 0.1
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water) exhibits slow tumbling rates and high relaxivity, 
which results in T1 hyperintensity on MRI. 

Given the findings above, dechelation of free gadolinium 
from the intact GBCA is considered to be an initial step in 
the mechanism of gadolinium deposition. In this respect, 
transmetallation has been suggested to play a major 
role in gadolinium deposition. Endogenous metals (e.g., 
Fe3+, Mg2+, Cu2+, Zn2+, and Ca2+) attract ligands to release 
Gd3+ ions, which in turn are deposited in the tissue as 
gadolinium phosphate (40, 63, 64). According to Frenzel 
et al. (43), the amount of free gadolinium released from 
linear GBCA (gadodiamide) reached around 25–29% after 
a 15-day incubation period at 37°C in human serum. The 
authors speculated that the presence of other metal ions 
that compete with gadolinium for chelation could result in 
the transmetallation (65), which results in the dechelation 
of gadolinium. Compared with the administration of 
macrocyclic GBCAs, the administration of linear GBCAs 
results in a 15-times higher concentration of gadolinium 
in the brain (58, 66-69). These results suggest that GBCA 
with lower thermodynamic stability will facilitate easier 
transmetallation with endogenous metals, such as iron 
and zinc (64, 70, 71). The gadolinium deposition area is 

intrinsically the iron-rich area and is specifically the area 
affected by neurodegenerative disorders associated with 
iron and manganese accumulation in the brain (35, 70, 71). 
Gadolinium could target the ferroportin-rich areas that are 
involved in the active regulation of iron and manganese 
metabolism, resulting in metal accumulation and toxicity (64).

Another possible mechanism for gadolinium accumulation 
is a metal-transporter-mediated accumulation of GBCA. A 
high concentration of gadolinium has been reported in the 
dentate nucleus, globus pallidus interna, and pulvinar of 
the thalamus (65, 72), with iron or calcium also showing 
relatively higher concentrations in these regions (73). 
These findings suggest that gadolinium is not transported 
passively but rather by some biological mechanisms, such 
as metal transporters (65, 74). Specific metal transporters 
mediate the transport and the intracellular distribution 
of metals. Less is known about the exact mechanism. 
Many types of metal transporters are present at different 
concentrations, and each mediates and maintains the 
concentration gradient of the metal. Transporters are not 
always specific for a single metal, and they can transport 
chemically similar metals, such as lead and cadmium (65, 74). 

Finally, the cerebrospinal fluid (CSF) pathway has been 

Table 2. Studies on Gadolinium Deposition in the Brain (continued)

Year Authors
GBCAs 

Investigated
GBCAs Related to 
Brain Deposition

Subjects
Numbers of Gd Admininstration

(Times [Mean])
Dose (mmol/kg/ 
Time or mL/Time)

2016 Murata et al. (90)

Primo
Mu
Pro
G

Primo
Mu
Pro
G

1
1
5
2

10 
1 
1–11
1–2

0.025
0.1
0.1
0.1

2017 McDonald et al. (56) O O 5 4–18 0.1
2017 McDonald et al. (60) O O 3 4, 8, 9 0.1

Animal studies
2015 Robert et al. (66) O, D O, D 7 rats each 20 (4 days/week for 5 weeks) 0.6
2016 Robert et al. (67) O, M, Mu, D O, M, Mu, D 8 rats each 20 (4 days/week for 5 weeks) 0.6
2016 Jost et al. (75) O, M, Mu, D, G O, Mu, M (n/s) 10 rats each 10 (5 days/week for 2 weeks) 2.5

2017 Smith et al. (59) O, M O, M (n/s) 6/12 rats 
10 (2 days/week for 5 weeks) or 

20 (4 days/week for 5 weeks)
0.6

2017 Lohrke et al. (58) O, M, Pro, G O, M, Pro, G (n/s) 10 rats each 20 (5 days/week for 4 weeks) 2.5
2017 Rasschaert et al. (92) O O 20 rats 20 (4 days/week for 5 weeks) 0.6
2017 Frenzel et al. (62) O, M, Mu, D, G O, M, Mu, D, G 10 rats each 10 (5 days/week for 2 weeks) 2.5
2017 McDonald et al. (91) O, Mu, Pro, G O, Mu, Pro, G 6 rats each 20 (5 days/week for 4 weeks) 2.5
2018 Boyken et al. (93) M, G M, G 13 pigs 4–48 11–320 μmol/kg
2018 Bussi et al. (94) Pro, D, G Pro, D, G 15 rats each 20 (4 days/week for 5 weeks) 0.6

*There is increased T1 signal change over time in patients who underwent gadobenate dimeglumine-enhanced studies and had prior 
administration of gadodiamide compared to those who received gadobenate dimeglumine alone, †Patients for impaired renal function. D = 
Dotarem (Guerbet), G = Gadovist (Bayer AG), GBCAs = gadolinium-based contrast agents, Gd = gadolinium, M = Magnevist (Bayer AG), 
Mu = MultiHance (Bracco Imaging S.p.A.), N/A = not available, n/s = not significant, O = Omniscan (GE Healthcare AS), Opt = OptiMark 
(Guerbet), Primo = Primovist (Bayer AG), Pro = ProHance (Bracco Imaging S.p.A.)
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suggested to have a role in the mechanism of brain 
accumulation of gadolinium. A possible route of brain 
exposure to all GBCAs via the CSF has been observed in rats 
(75) and some humans (76), thereby bypassing the BBB.

Recent preclinical studies have also reported that the 
gadolinium concentration was highest in the olfactory 
bulb after both the linear and macrocyclic agent exposures 
(58, 68). Interestingly, the gadolinium concentration was 
decreased in the posterior direction in animals that were 
administered gadopentetate dimeglumine, whereas the 
gadolinium concentrations were similar in all 7 investigated 
regions of animals that were administered gadodiamide 
(58). These findings suggest that an ongoing drainage 
of CSF occurs from the subarachnoid space through the 
olfactory nerves into the nasal lymphatic system (58). 
Iliff et al. (77) revealed that GBCAs distribute along the 
glymphatic system (a so-called waste clearance system) 
after intracisternal injection, from the basal artery to the 
olfactory artery (paravascular pathway), suggesting that 
GBCAs enter the brain through the exchange between 
CSF and interstitial fluid (58). A recent study involving 
patients administered GBCA in the subarachnoid space 
showed increased signal intensity of the cortex and white 
matter 4 hours after GBCA administration (78). Naganawa 
et al. (79) demonstrated signal enhancement in the 
subarachnoid space and perivascular space on enhanced 
fluid-attenuated inversion recovery (FLAIR) 4 hours after 
GBCA administration. This result suggests that even in 
normal renal function, intravenous GBCA can be transported 
through the glymphatic system and reach the brain (65). 

What Type of Contrast Agent Is Responsible for 
Gadolinium Deposition in the Brain?

Many studies have investigated the association between 
T1 hyperintensities in the globus pallidus and dentate 
nucleus and multiple administrations of linear GBCAs (11-
30). In retrospective human studies that included patients 
with multiple linear GBCAs, T1 signal changes in the dentate 
nucleus and/or globus pallidus were consistently associated 
with multiple administrations of nonspecific extracellular 
linear GBCAs, such as gadodiamide (11, 12, 17, 22) and 
gadopentetate (11, 13, 19, 23, 26). On the other hand, 
some studies focusing on the signal changes in patients who 
were repeatedly administered macrocyclic GBCAs (gadobutrol 
[Gadovist; Bayer AG], gadoterate meglumine [Dotarem; 
Guerbet, Rovi, France], and gadoteridol [ProHance; Bracco 

Imaging S.p.A.]), which are more stable, have found that 
macrocyclic GBCAs were not associated with significant 
signal intensity changes in the globus pallidus and dentate 
nucleus in the brain (52, 80-83). Studies comparing linear 
(gadopentetate) and macrocyclic (gadoteridol or gadoterate 
meglumine) agents have reconfirmed that the signal 
intensity change is significantly and exclusively related to 
the use of linear agents (14-16, 20, 84, 85).

All of the above-mentioned studies were retrospective 
human studies using MRI; therefore, the study results 
cannot be compared. The patient populations, the number 
and frequency of GBCA administrations, the cumulative 
amounts of GBCAs, and the methods for measuring signal 
changes on MRI could not be completely controlled and 
standardized; therefore, the results contradict other studies 
using gadobenate (17, 18, 22), gadoxetic acid (27, 86, 
87), gadobutrol (53, 88), and gadoterate meglumine (89). 
Moreover, several autopsy studies measuring the deposited 
concentrations in brain tissue using ICP-MS revealed that 
gadolinium could be detected regardless of the GBCA class 
(55-57, 60, 90). 

Prospective animal studies with standardized protocols 
were developed to overcome the potential pitfalls of 
retrospective human studies. These animal studies have also 
demonstrated an association between exposure to linear 
GBCAs and gadolinium accumulation in the brain (58, 62, 
66, 67, 69, 75, 91-93). According to Robert et al. (66), all 
linear GBCAs (gadodiamide, gadopentetate, and gadobenate) 
resulted in T1 hyperintensities in the deep cerebellar nuclei 
of rats, whereas macrocyclic GBCAs (gadoterate meglumine) 
did not. Several studies using MRI demonstrated signal 
intensity changes in the deep cerebellar nuclei of rats that 
were associated with the administration of linear GBCAs 
(gadodiamide, gadopentetate, and gadobenate) but not 
macrocyclic GBCAs (gadoterate meglumine) (66, 67, 75, 
91). The animal studies using ICP-MS demonstrated that 
gadolinium concentrations in brain tissue were significantly 
higher in animals exposed to linear GBCAs (gadodiamide, 
gadopentetate) than in those exposed to macrocyclic GBCAs 
(gadobutrol, gadoteridol) (58, 91, 93). However, more 
recent studies reported that gadolinium was detected in 
rats repeatedly injected with macrocyclic agents, albeit at 
very low levels (91, 94). 

Table 2 summarizes the studies that demonstrate a 
relationship between GBCAs and signal intensity changes 
in the dentate nucleus and globus pallidus in human and 
animals. 
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Who Is Susceptible to Gadolinium Deposition 
in the Brain?

Current evidence suggests that a certain threshold needs 
to be reached in order to change the magnetic resonance 
(MR) signal after repeated injections of linear GBCAs. In 
a study with gadodiamide, at least 6 enhanced MRI scans 
were required to reveal the T1 hyperintensity in the dentate 
nucleus (51). Studies by Weberling et al. (18) and Adin et 
al. (13) have also supported the findings that at least 4–6 
injections of linear GBCAs are required to cause a visually 
detectable T1 signal change in the dentate nucleus. Two 
autopsy studies on subjects exposed to gadodiamide have 
confirmed that gadolinium deposition in the brain showed a 
dose-dependent relationship with the injection doses of the 
GBCAs (55, 56). 

Because most of GBCAs used for the diagnosis of brain 
diseases are exclusively excreted by the kidneys, longer 
retention times of the GBCAs in the body can be expected 
in patients with impaired renal function. A longer retention 
time in the body is associated with a higher chance of 
dechelation of the free Gd3+ from GBCAs, according to their 
stability and patients’ conditions. Patients undergoing 
hemodialysis who have repeated injections of linear GBCAs 
have a greater T1 signal increase in the dentate nucleus 
compared to patients with near-normal renal function (95), 
which was corroborated by an animal study (92). All this 
evidence suggests that renal function affects the rate of 
gadolinium accumulation in the brain after linear GBCA 
injection.

The pediatric population has also shown similar findings 
in terms of gadolinium deposition in the brain. In studies 
by Hu et al. (19) and Roberts et al. (23), administration 
of at least 5 doses of gadopentetate was linked to an 
increased signal intensity of the dentate nucleus and/or 
globus pallidus. The dentate nucleus signal intensity was 
significantly correlated with the cumulative dose of GBCAs 
(26). However, macrocyclic GBCAs were not associated 
with T1 signal change of the dentate nucleus and globus 
pallidus in a pediatric population (96). In a study involving 
both linear GBCA-exposure and macrocyclic GBCA-exposure 
groups in a pediatric population, only linear GBCAs were 
found to be responsible for significant signal intensity 
increase in the dentate nucleus and globus pallidus between 
the first and last examination (85). Only one pediatric 
study of a macrocyclic GBCA (gadoterate meglumine) 
reported no visible T1 hyperintensities but an increase in 

the dentate nucleus-to-pons ratio and globus pallidus-to-
thalamus ratio in subjects with multiple GBCA exposures 
(89). There is no clear evidence that pediatric subjects are 
more susceptible to gadolinium accumulation in the brain. 
Compared with adults, pediatric patients are more likely 
to be injected with GBCAs repeatedly throughout their 
lifetimes; furthermore, pediatric patients may have longer 
retention times after gadolinium deposition for the rest of 
their lives. Hence, because the developing brains of infants 
and children are more vulnerable to certain toxic agents, it 
is wise to consider pediatric patients as a high-risk group 
for gadolinium deposition in the brain.

How Can GBCA Deposition Be Visualized Using 
MRI?

In most of the human reports (Table 2), the T1 
hyperintensity due to gadolinium deposition was observed 
using the spin-echo (SE) or turbo SE techniques (11, 
12, 14, 15, 17, 19, 22, 23, 25, 27-29, 53, 85, 86, 89). 
However, T1-weighted gradient-echo sequences, such as 
the fast low angle shot and magnetization-prepared rapid 
gradient echo (MPRAGE), can also be used to visualize the 
T1 hyperintensity due to GBCAs (13, 14, 16, 18, 20, 21, 26, 
30, 84). T1 FLAIR also depicts the T1 hyperintensity due to 
GBCAs (13). 

Ramalho et al. (21) investigated the feasibility of T1 
sequences for the visualization of gadolinium deposition. 
The authors found that the signal intensity ratio difference 
before and after GBCA exposures was significantly observed 
on both SE and MPRAGE sequences (21). 

Kuno et al. (28) used T1 and T2 relaxation maps produced 
using the mixed fast spin echo pulse sequence to assess 
the effect of gadolinium accumulation in the global and 
regional brains of patients with prior exposure to linear 
GBCAs. In this study, the T1 values in the gray matter were 
significantly shorter in patients with prior GBCA exposure 
than in those without the prior exposure (p = 0.022). In 
addition, the authors also found the T1 value of the whole 
brain, globus pallidus, dentate nucleus, and thalamus and 
the T2 value of the whole brain, dentate nucleus, and 
thalamus to correlate significantly with the cumulative 
doses of GBCAs. 

In another studies using T1 and T2* relaxometry, the T1 
relaxation time in the dentate was significantly correlated 
with the number of GBCA administrations (88, 97). In 
contrast, the T2* signal intensity was age-dependent and 
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independent of previous GBCA administrations (97).
Recently, it has been suggested that quantitative 

susceptibility mapping (QSM) enables us to calculate the 
susceptibility value change induced by GBCA accurately. 
Hinoda et al. (98) reported increased susceptibility of 
the brain areas in the multiple GBCA-exposure group as 
compared with the normal control group. 

These quantitative study results using either T1/T2 
mapping or QSM are completely in line with reports of T1 
hyperintensities in the brains of patients with multiple 
exposures to GBCAs. 

What Is the Clinical Significance of GBCA 
Deposition in the Brain?

Despite accumulating evidence of gadolinium deposition 
in the brain, little is known about the clinical importance 
of gadolinium accumulation in the brain. Considering the 
location of gadolinium deposition in the globus pallidus, 
one can infer that the gadolinium deposition might be 
associated with extrapyramidal system dysfunction and 
might be related to parkinsonism in later life. 

In a population-based study (n = 246557) of two groups 
that underwent initial MR imaging between 2003 and 2013 
(one group with exposure to at least one dose of GBCA 
and the other without the exposure), the authors found 
no significant difference in the presence of incidental 
parkinsonism between the two groups (99). The authors 
concluded that their results contradicted the hypothesis 
that gadolinium deposits in the globus pallidus lead to 
neuronal damage that manifests as parkinsonism. However, 
a weakness of this study was the lack of details on MR. 

Bauer et al. (100) evaluated 376 patients who underwent 
both contrast-enhanced MR and PET/CT imaging between 
2004 and 2015. They found that the median SUVmax of 
the dentate nucleus and globus pallidus was significantly 
lower in the group with exposure to gadolinium than in 
the control group; the differences were 16% and 27%, 
respectively. Accordingly, the authors speculated that 
gadolinium deposition led to decreased FDG uptake due to 
decreased metabolism in the corresponding area. However, 
they did not correlate these findings to clinical findings. 

Semelka et al. (101) proposed a new disease category-
gadolinium deposition disease-based on the observational 
study of 42 patients who underwent gadolinium-enhanced 
MRI previously. In the acute stage of gadolinium exposure, 
patients complained of central and peripheral pain, 

headache, bone pain, and skin thickening. In the chronic 
stage, 29 of 42 patients had persistent clouded mentation 
and headache. 

At the time of introduction of GBCA, dose-dependent 
neurotoxicity was reported in a preclinical study using 
dogs (102). According to Roman-Goldstein et al. (103), 
gadopentetate dimeglumine administration after osmotic 
BBB disruption increased the frequency of delayed 
seizures in a dose-dependent fashion. Although human 
studies have not proven these findings of central nervous 
system toxicity, it is reasonable to suspect there is still a 
possibility of neurotoxicity due to gadolinium deposition in 
the brain when GBCA is given repetitively to subjects. Thus, 
further evidence is needed to explore the clinical impact of 
gadolinium deposition in the brain. 

Are There Alternatives? 

As discussed above, the exact nature and clinical 
implication of GBCA accumulation in the brain are still 
unknown. Despite the convincing evidence of a link between 
exposure to linear GBCA and gadolinium accumulation in 
the brain, we cannot currently conclude that macrocyclic 
GBCAs do not accumulate in the brain. At present, it is 
advisable to minimize the number of repeated doses of 
GBCA as much as possible. There are several ways to reduce 
the number of repeated doses of GBCA. A recent study has 
suggested a possibility that a deep learning method can 
be used to enhance the image quality of low-dose post-
contrast enhanced images up to a level comparable to full-
dose post-contrast enhanced images (104). Some other 
possibilities have been suggested, such as iron-contrast 
agents that can be used for contrast-enhanced MRI (105). 
Several interesting ideas have been tried to enhance the 
image quality of MRI, such as the use of natural D-glucose 
as an infusible biodegradable MRI agent (106). Other 
approaches include the use of endogenous contrasts, such 
as arterial spin labeling (107). 

However, given the lack of evidence of clinical harm due 
to GBCA deposition in the brain, we also have to be careful 
about the potential harm from overprotective measures 
against GBCA use in clinical practice. In addition, we have 
to be careful to weigh the potential harm of GBCA-enhanced 
MRI without radiation exposure and that of iodine contrast-
enhanced CT imaging with radiation exposure. Given the 
rarity of GBCA-related toxicity and brain deposition, for 
which the exact clinical implications are unknown, the 
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risk of GBCA use should not be judged on the basis of 
perception rather than facts. 

CONCLUSION 

In summary, linear GBCAs were found to be almost 
exclusively responsible for the brain accumulation of 
gadolinium after repeated injections, as evidenced by 
T1 hyperintensity. Furthermore, the most recent animal 
studies have also documented the brain accumulation of 
gadolinium from macrocyclic agents, albeit at very low 
levels. The dechelation of free gadolinium from unstable 
GBCAs, transmetallation, active metal transporters in cell 
membranes, and the glymphatic system as an alternative 
access route to the brain may have roles in the underlying 
mechanisms of gadolinium accumulation. Linear GBCAs 
are considered to be less stable than macrocyclic GBCAs; 
therefore, they have a greater chance of brain deposition. 
Despite a lack of clinical evidence on the neurologic effects 
of gadolinium deposition, a careful approach to the use of 
GBCAs in clinical practice is advisable until further evidence 
is discovered. 
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