DOI QR코드

DOI QR Code

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang (Civil Engineering School, Shenyang Jianzhu University) ;
  • Sun, Li (Civil Engineering School, Shenyang Jianzhu University) ;
  • Wang, Ke (China Communications Construction Company First Highway Consultants Co. Ltd.) ;
  • Yuan, Yue (Highway Administration Bureau of Liaoning Communications Department) ;
  • Wei, Minghai (Civil Engineering School, Shenyang Jianzhu University)
  • 투고 : 2019.01.16
  • 심사 : 2019.06.04
  • 발행 : 2019.07.25

초록

Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. ACI 440.1R-15 (2015), Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, ACI Committee, Farmington Hills, MI, USA.
  2. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2014), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Constr., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438.
  3. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2014), "Strength and axial behavior of circular concrete columns reinforced with CFRP bars and spirals", J. Compos. Constr., 18(2), 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000430.
  4. Al-Osta, M.A., Al-Sakkaf, H.A., Sharif, A.M., Ahmad, S. and Baluch, M.H. (2018), "Finite element modeling of corroded RC beams using cohesive surface bonding approach", Comput. Concrete, 22(2), 167-182. https://doi.org/10.12989/cac.2018.22.2.167.
  5. Choo, C.C., Harik, I.E. and Gesund, H. (2006), "Minimum reinforcement ratio for fiber-reinforced polymer reinforced concrete rectangular columns", ACI Mater. J., 103(3), 460.
  6. Choo, C.C., Harik, I.E. and Gesund, H. (2006), "Strength of rectangular concrete columns reinforced with fiber-reinforced polymer bars", ACI Struct. J., 103(3), 452.
  7. Cosenza, E., Manfredi, G. and Realfonzo, R. (1997), "Behavior and modeling of bond of FRP rebars to concrete", J. Compos. Constr., 1(2), 40-51. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(40).
  8. CSA S806-12(2012), Design and Construction of Buildings Components with Fiber-reinforced Polymers, Canadian Standards Association (CSA), Toronto, Ontario, Canada.
  9. De Luca, A., Matta, F. and Nanni, A. (2010), "Behavior of fullscale glass fiber-reinforced polymer reinforced concrete columns under axial load". ACI Struct. J., 107(5), 589. https://doi.org/10.14359/51663912.
  10. GB 50608-2010 (2010), Technical Code for Infrastructure Application of FRP Composites, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  11. Gong, Y. and Zang J.W. (2009), "Experimental study of reinforced concrete eccentric compression column with CFRP tendons", China Civil Eng. J., 42(10), 46-52. https://doi.org/10.1007/978-3-540-85168-4_52.
  12. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical investigations", J. Compos. Constr., 21(2), 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000748.
  13. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Experimental study of circular high-strength concrete columns reinforced with GFRP bars and spirals under concentric and eccentric loading", J. Compos. Constr., 21(2), 04016078. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000734.
  14. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2017), "Failure envelope of circular concrete columns reinforced with glass fiber-reinforced polymer bars and spirals", ACI Struct. J., 114(6), 1417-1428. https://doi.org/10.14359/51689498.
  15. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2017), "Strength of circular HSC columns reinforced internally with carbon-fiber-reinforced polymer bars under axial and eccentric loads", Constr. Build. Mater., 141, 366-378. https://doi.org/10.1016/j.conbuildmat.2017.02.117.
  16. Hadhood, A., Mohamed, H.M., Ghrib, F. and Benmokrane, B. (2017), "Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads", Compos. Part B: Eng., 114, 223-236. https://doi.org/10.1016/j.compositesb.2017.01.063.
  17. Hadi, M.N. and Youssef, J. (2016), "Experimental investigation of GFRP-reinforced and GFRP-encased square concrete specimens under axial and eccentric load, and four-point bending test", J. Compos. Constr., 20(5), 04016020. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000675.
  18. Hadi, M.N., Hasan, H.A. and Sheikh, M.N. (2017), "Experimental investigation of circular high-strength concrete columns reinforced with glass fiber-reinforced polymer bars and helices under different loading conditions", J. Compos. Constr., 21(4), 04017005. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000784
  19. Hadi, M.N., Karim, H. and Sheikh, M.N. (2016), "Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", J. Compos. Constr., 20(4), 04016009. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
  20. Hao, Q.D., Wang, Y.L., Zhang, Z.C. and Ou, J.P. (2007), "Bond strength improvement of GFRP rebars with different rib geometries", J. Zhejiang Univ.-Sci. A, 8(9), 1356-1365.https://doi.org/10.1631/jzus.2007.a1356.
  21. Hasan, H.A., Sheikh, M.N. and Hadi, M.N. (2017), "Performance evaluation of high strength concrete and steel fiber high strength concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 134, 297-310. https://doi.org/10.1016/j.conbuildmat.2016.12.124.
  22. Issa, M., Metwally, I. and Elzeiny, S. (2012), "Performance of eccentrically loaded GFRP reinforced concrete columns", World J. Eng., 9(1), 71-78. https://doi.org/10.1260/1708-5284.9.1.71.
  23. JSCE (1997), Recommendation for Design and Construction of Concrete Structures using Continuous Fiber Reinforcing Materials, Japan Society of Civil Engineers, Tokyo, Japan.
  24. Karim, H., Sheikh, M.N. and Hadi, M.N. (2016), "Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
  25. Kosmidou, P.M.K., Chalioris, C.E. and Karayannis, C.G. (2018), "Flexural/shear strength of RC beams with longitudinal FRP bars an analytical approach", Comput. Concrete, 22(6), 573-592. https://doi.org/10.12989/cac.2018.22.6.573.
  26. Lee, S.J., Moon, D.Y., Ahn, C.H., Lee, J.W. and Zi, G. (2018), "A precast slab track partially reinforced with GFRP rebars", Comput. Concrete, 21(3), 239-248. https://doi.org/10.12989/cac.2018.21.3.239.
  27. Lee, Y.H., Kim, M.S., Kim, H., Lee, J. and Kim, D.J. (2013), "Experimental study on bond strength of fiber reinforced polymer rebars in normal strength concrete", J. Adhes. Sci. Technol., 27(5-6), 508-522. https://doi.org/10.1080/01694243.2012.687554.
  28. Lezgy-Nazargah, M., Dezhangah, M. and Sepehrinia, M. (2018), "The effects of different FRP/concrete bond-slip laws on the 3D nonlinear FE modeling of retrofitted RC beams-A sensitivity analysis", Steel Compos. Struct., 26(3), 347-360. https://doi.org/10.12989/scs.2018.26.3.347.
  29. Manalo, A., Benmokrane, B., Park, K.T. and Lutze, D. (2014), "Recent developments on FRP bars as internal reinforcement in concrete structures", Concrete Aust., 40(2), 46-56.
  30. Mesbah, H.A., Benzaid, R. and Benmokrane, B. (2017), "Evaluation of bond strength of FRP reinforcing rods in concrete and FE modeling", Int. J. Civil Eng. Constr. Sci., 4(3), 21-41.
  31. Mirmiran, A., Yuan, W. and Chen, X. (2001), "Design for slenderness in concrete columns internally reinforced with fiber-reinforced polymer bars", Struct. J., 98(1), 116-125. https://doi.org/10.14359/10153.
  32. Mohamed, H.M. and Masmoudi, R. (2010), "Axial load capacity of concrete-filled FRP tube columns: Experimental versus theoretical predictions", J. Compos. Constr., 14(2), 231-243. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000066.
  33. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  34. Mohamed, N., Farghaly, A.S. and Benmokrane, B. (2017), "Beamtesting method for assessment of bond performance of FRP bars in concrete under tension-compression reversed cyclic loading", J. Compos. Constr., 21(1), 06016001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000687.
  35. Okelo, R. and Yuan, R.L. (2005), "Bond strength of fiber reinforced polymer rebars in normal strength concrete", J. Compos. Constr., 9(3), 203-213. https://doi.org/10.1016/j.conbuildmat.2008.04.011.
  36. Paramanantham, N.S. (1994), "Investigation of the behavior of concrete columns reinforced with fiber reinforced plastic rebar", Ph.D. Dissertation, Lamer University, Beaumont, Texas.
  37. Peng, F. and Xue, W.C. (2018), "Calculation approach of ultimate capacity of FRP reinforced concrete columns under eccentric compression", J. Build. Struct., 39, 147-155. https://doi.org/10.14006/j.jzjgxb.2018.10.017.
  38. Pessiki, S. and Pieroni, A. (1997), "Axial load behavior of largescale spirally-reinforced high-strength concrete columns", ACI Struct. J., 94(3), 304-314. https://doi.org/10.1016/S0925-8388(97)00116-3.
  39. Sharbatdar, M.K. (2003), "Concrete columns and beams reinforced with FRP bars and grids under monotonic and reversed cyclic loading", Ph.D. Dissertation, University of Ottawa, Ottawa.
  40. Sreenath, S., Balaji, S. and Raja Mohan, K.S. (2017), "Behaviour of axially and eccentrically loaded short columns reinforced with GFRP bars", IOP Conf. Ser.: Earth Environ. Sci., 80, 012030. https://doi.org/10.1088/1755-1315/80/1/012030.
  41. Sun, L. and Wei, M. (2017), "Experimental study on the behavior of GFRP reinforced concrete columns under eccentric axial load", Constr. Build. Mater., 152, 214-225. https://doi.org/10.1016/j.conbuildmat.2017.06.159.
  42. Tobbi, H., Farghaly, A. S. and Benmokrane, B. (2013), "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios", ACI Struct. J., 111(2), 375-385. https://doi.org/10.14359/51686528.
  43. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars", ACI Struct. J., 109(4), 551-558. https://doi.org/10.14359/51683874.
  44. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2013), "Strength model for concrete columns reinforced with fiber-reinforced polymer bars and ties", ACI Struct. J., 1114, 789-798. https://doi.org/10.14359/51686630.
  45. Vilanova, I., Baena, M., Torres, L. and Barris, C. (2015), "Experimental study of bond-slip of GFRP bars in concrete under sustained loads", Compos. Part B: Eng., 74, 42-52. https://doi.org/10.1016/j.compositesb.2015.01.006.
  46. Xu, K., Ren, C., Deng, Q., Jin, Q. and Chen, X. (2018), "Realtime monitoring of bond slip between GFRP bar and concrete structure using piezoceramic transducer-enabled active sensing", Sensor., 18(8), 2653. https://doi.org/10.3390/s18082653.
  47. Zadeh, H.J. and Nanni, A. (2017), "Flexural stiffness and secondorder effects in fiber-reinforced polymer-reinforced concrete frames", ACI Struct. J., 114, 533-543. https://doi.org/10.14359/51689257.
  48. Zhang, Y. (2016), "Experimental study on bond performance theory between GFRP bar and concrete", Master's Dissertation, Shenyang Jianzhu University, Shenyang.