Acknowledgement
Supported by : National Natural Science of China
References
- Caballero, A., Lopez, C.M. and Carol, I. (2006), "3D mesostructural analysis of concrete specimens under uniaxial tension", Comput. Meth. Appl. Mech. Eng., 195(52), 7182-7195. http://dx.doi.org/10.1016/j.cma.2005.05.052.
- Chen, G., Hao, Y.F. and Hao, H. (2015), "3D meso-scale modelling of concrete material in spall tests", Mater. Struct., 48(6), 1887-1899. http://dx.doi.org/10.1617/s11527-014-0281-z.
- Du, C.B. and Sun, L.G. (2007), "Numerical simulation of aggregate shapes of two-dimensional concrete and its application", J. Aerosp. Eng., 20(3), 172-178. https://doi.org/10.1061/(ASCE)0893-1321(2007)20:3(172).
- Du, X.L., Jin, L. and Ma, G.W. (2013a), "Macroscopic effective mechanical properties of porous dry concrete", Cement Concrete Res., 44, 87-96. http://dx.doi.org/10.1016/j.cemconres.2012.10.012.
- Du, X.L., Jin, L. and Ma, G.W. (2013b), "Meso-element equivalent method for the simulation of macro mechanical properties of concrete", Int. J. Damage Mech., 22(5), 617-642. http://dx.doi.org/10.1177/1056789512457096.
- Gao, Z.G. and Liu, G.T. (2003), "Two-dimensional random aggregate structure for concrete", J. Tsinghua Univ. (Sci. Technol.), 43(5), 710-714. https://doi.org/10.3321/j.issn:1000-0054.2003.05.036.
- Grassl, P., Gregoire, D., Solano, L.R. and Pijaudier-Cabot, G. (2012), "Meso-scale modelling of the size effect on the fracture process zone of concrete", Int. J. Solid. Struct., 49(13), 1818-1827. http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023.
- Guan, X., Zhao, S. and Liu, J. (2018), "Surgically inspired technique of ITZ integration in lattice model for numerical simulation of cement composites", KSCE J. Civil Eng., 22(11), 4454-4460. http://dx.doi.org/10.1007/s12205-018-0966-x.
- Haeri, H. and Sarfarazi, V. (2016), "Numerical simulation of tensile failure of concrete using particle flow code (PFC)", Comput. Concrete, 18(1), 39-51. http://dx.doi.org/10.12989/cac.2016.18.1.039.
- Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2018), "Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D", Comput. Concrete, 22(5), 469-479. http://dx.doi.org/10.12989/cac.2018.22.5.469.
- Jin, L, Yu W.X., Du, X.L., Zhang, S. and Li, D. (2019), "Mesoscale modelling of the size effect on dynamic compressive failure of concrete under different strain rates", Int. J. Impact Eng., 125, 1-12. https://doi.org/10.1016/j.ijimpeng.2018.10.011.
- Jin, L., Du, X.L. and Ma, G.W. (2012), "Macroscopic effective moduli and tensile strength of saturated concrete", Cement Concrete Res., 42(12), 1590-1600. http://dx.doi.org/10.1016/j.cemconres.2012.09.012.
- Karavelic, E., Nikolic, M., Ibrahimbegovic, A. and Kurtovic, A. (2019), "Concrete meso-scale model with full set of 3D failure modes with random distribution of aggregate and cement phase. Part I: Formulation and numerical implementation", Comput. Meth. Appl. Mech. Eng., 344, 1051-1072. http://dx.doi.org/10.1016/j.cma.2017.09.013.
- Kim, S.M. and Al-Rub, R.K.A. (2011), "Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002.
- Li, X. and Chen, J. (2017), "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Meth. Appl. Mech. Eng., 315, 744-759. http://dx.doi.org/10.1016/j.cma.2016.11.029.
- Lilliu, G. and Van Mier, J.G. (2003), "3D lattice type fracture model for concrete", Eng. Fract. Mech., 70(7-8), 927-941. http://dx.doi.org/10.1016/S0013-7944(02)00158-3.
- Lopez, C.M., Carol, I. and Aguado, A. (2008a), "Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior", Mater. Struct., 41(3), 583-599. http://dx.doi.org/10.1617/s11527-007-9314-1.
- Lopez, C.M., Carol, I. and Aguado, A. (2008b), "Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test", Mater. Struct., 41(3), 601-620. http://dx.doi.org/10.1617/s11527-007-9312-3.
- Mohamed, A.R. and Hansen, W. (1999), "Micromechanical modeling of concrete response under static loading-Part 1: model development and validation", Mater. J., 96(2), 196-203. http://dx.doi.org/10.14359/445.
- Mondal, P., Shah, S.P. and Marks, L.D. (2009), "Nanomechanical properties of interfacial transition zone in concrete", Eds. Z. Bittnar., P.M. Bartos., J. Nemecek., V Smilauer. and J. Zeman, Nanotechnology in Construction 3, Springer, Berlin, Heidelberg. http://dx.doi.org/10.1007/978-3-642-00980-8_42.
- Nguyen, T.T., Bui, H.H., Ngo, T.D., Nguyen, G.D., Kreher, M.U. and Darve, F. (2019), "A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression", Eng. Fract. Mech., 209, 228-244. http://dx.doi.org/10.1016/j.engfracmech.2019.01.033.
- Nitka, M. and Tejchman, J. (2015), "Modelling of concrete behaviour in uniaxial compression and tension with dem", Granular Matter., 17(1), 145-164. http://dx.doi.org/10.1007/s10035-015-0546-4.
- Ooi, E.T. and Yang, Z.J. (2011), "Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method", Eng. Fract. Mech., 78(2), 252-273. http://dx.doi.org/10.1016/j.engfracmech.2010.08.002.
- Pan, Z., Wang, D., Ma, R. and Chen, A. (2018), "A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles", Comput. Concrete, 22(6), 551-561. http://dx.doi.org/10.12989/cac.2018.22.6.551.
- Peng, Y., Wang, Q., Ying, L., Kamel, M. and Peng, H. (2019), "Numerical simulation of dynamic mechanical properties of concrete under uniaxial compression", Mater., 12(4), 643. https://doi.org/10.3390/ma12040643.
- Rangari, S., Murali, K. and Deb, A. (2018), "Effect of mesostructure on strength and size effect in concrete under compression", Eng. Fract. Mech., 195, 162-185. http://dx.doi.org/10.1016/j.engfracmech.2018.04.006.
- Roth, S.N., Leger, P. and Soulaimani, A. (2015), "A combined XFEM-damage mechanics approach for concrete crack propagation", Comput. Meth. Appl. Mech. Eng., 283, 923-955. http://dx.doi.org/10.1016/j.cma.2014.10.043.
- Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421. http://dx.doi.org/10.1023/B:INTS.0000042339.92990.4c.
- Setiawan, Y., Gan, B.S. and Han, A.L. (2017), "Modeling of the ITZ zone in concrete: Experiment and numerical simulation", Comput. Concrete, 19(6), 641-649. https://doi.org/10.12989/cac.2017.19.6.641.
- Shen, L., Ren, Q.W, Xia, N., Sun, L.G. and Xia, X.Z. (2015), "Mesoscopic numerical simulation of effective thermal conductivity of tensile cracked concrete", Constr. Build. Mater., 95, 467-475. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.117.
- Snozzi, L., Caballero, A. and Molinari, J.F. (2011), "Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading", Cement Concrete Res., 41(11), 1130-1142. http://dx.doi.org/10.1016/j.cemconres.2011.06.016.
- Van Mier, J.G., Van Vliet, M.R. and Wang, T.K. (2002), "Fracture mechanisms in particle composites: statistical aspects in lattice type analysis", Mech. Mater., 34(11), 705-724. http://dx.doi.org/10.1016/S0167-6636(02)00170-9.
- Van Vliet, M.A. and Van Mier, J.M. (1996), "Experimental investigation of concrete fracture under uniaxial compression", Mech. Cohesive-frictional Mater., 1(1), 115-127. http://dx.doi.org/10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U.
- Wang, G.L., Pekau, O.A., Zhang, C.H. and Wang, S.M. (2000), "Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics", Eng. Fract. Mech., 65(1), 67-87. http://dx.doi.org/10.1016/S0013-7944(99)00104-6.
- Wang, X.F., Yang, Z.J., Yates, J.R., Jivkov, A.P. and Zhang, C. (2015), "Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores", Constr. Build. Mater., 75, 35-45. http://dx.doi.org/10.1016/j.conbuildmat.2014.09.069.
- Wang, X.F., Zhang, M.Z. and Jivkov, A.P. (2016), "Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete", Int. J. Solid. Struct., 80, 310-333. http://dx.doi.org/10.1016/j.ijsolstr.2015.11.018.
- Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: Homogenisation and damage behavior", Finite Elem. Anal. Des., 42(7), 623-636. http://dx.doi.org/10.1016/j.finel.2005.11.008.
- Yang, Z.J., Su, X.T., Chen, J.F. and Liu, G.H. (2009), "Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials", Int. J. Solid. Struct., 46(17), 3222-3234. http://dx.doi.org/10.1016/j.ijsolstr.2009.04.013.
- Yu, Q., Liu, H., Yang, T. and Liu, H. (2018), "3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography", Int. J. Solid. Struct., 147, 204-222. https://doi.org/10.1016/j.ijsolstr.2018.05.026.
- Zhang, C., Zhou, W., Ma, G., Hu, C. and Li, S. (2015), "A mesoscale approach to modeling thermal cracking of concrete induced by water-cooling pipes", Comput. Concrete, 15(4), 485-501. http://dx.doi.org/10.12989/cac.2015.15.4.485.
- Zhang, S., Zhang, C., Liao, L. and Wang, C. (2018), "Numerical study of the effect of ITZ on the failure behaviour of concrete by using particle element modelling", Constr. Build. Mater., 170, 776-789. https://doi.org/10.1016/j.conbuildmat.2018.03.040.
Cited by
- Numerical study on interface optimization of new-to-old concrete with the slant grooves vol.34, 2019, https://doi.org/10.1016/j.istruc.2021.07.094