DOI QR코드

DOI QR Code

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun (College of Mechanics and Materials, Hohai University) ;
  • Hu, Shao-wei (School of Civil Engineering, Chongqing University)
  • Received : 2018.07.15
  • Accepted : 2019.05.17
  • Published : 2019.07.25

Abstract

Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

Keywords

Acknowledgement

Supported by : National Natural Science of China

References

  1. Caballero, A., Lopez, C.M. and Carol, I. (2006), "3D mesostructural analysis of concrete specimens under uniaxial tension", Comput. Meth. Appl. Mech. Eng., 195(52), 7182-7195. http://dx.doi.org/10.1016/j.cma.2005.05.052.
  2. Chen, G., Hao, Y.F. and Hao, H. (2015), "3D meso-scale modelling of concrete material in spall tests", Mater. Struct., 48(6), 1887-1899. http://dx.doi.org/10.1617/s11527-014-0281-z.
  3. Du, C.B. and Sun, L.G. (2007), "Numerical simulation of aggregate shapes of two-dimensional concrete and its application", J. Aerosp. Eng., 20(3), 172-178. https://doi.org/10.1061/(ASCE)0893-1321(2007)20:3(172).
  4. Du, X.L., Jin, L. and Ma, G.W. (2013a), "Macroscopic effective mechanical properties of porous dry concrete", Cement Concrete Res., 44, 87-96. http://dx.doi.org/10.1016/j.cemconres.2012.10.012.
  5. Du, X.L., Jin, L. and Ma, G.W. (2013b), "Meso-element equivalent method for the simulation of macro mechanical properties of concrete", Int. J. Damage Mech., 22(5), 617-642. http://dx.doi.org/10.1177/1056789512457096.
  6. Gao, Z.G. and Liu, G.T. (2003), "Two-dimensional random aggregate structure for concrete", J. Tsinghua Univ. (Sci. Technol.), 43(5), 710-714. https://doi.org/10.3321/j.issn:1000-0054.2003.05.036.
  7. Grassl, P., Gregoire, D., Solano, L.R. and Pijaudier-Cabot, G. (2012), "Meso-scale modelling of the size effect on the fracture process zone of concrete", Int. J. Solid. Struct., 49(13), 1818-1827. http://dx.doi.org/10.1016/j.ijsolstr.2012.03.023.
  8. Guan, X., Zhao, S. and Liu, J. (2018), "Surgically inspired technique of ITZ integration in lattice model for numerical simulation of cement composites", KSCE J. Civil Eng., 22(11), 4454-4460. http://dx.doi.org/10.1007/s12205-018-0966-x.
  9. Haeri, H. and Sarfarazi, V. (2016), "Numerical simulation of tensile failure of concrete using particle flow code (PFC)", Comput. Concrete, 18(1), 39-51. http://dx.doi.org/10.12989/cac.2016.18.1.039.
  10. Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2018), "Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D", Comput. Concrete, 22(5), 469-479. http://dx.doi.org/10.12989/cac.2018.22.5.469.
  11. Jin, L, Yu W.X., Du, X.L., Zhang, S. and Li, D. (2019), "Mesoscale modelling of the size effect on dynamic compressive failure of concrete under different strain rates", Int. J. Impact Eng., 125, 1-12. https://doi.org/10.1016/j.ijimpeng.2018.10.011.
  12. Jin, L., Du, X.L. and Ma, G.W. (2012), "Macroscopic effective moduli and tensile strength of saturated concrete", Cement Concrete Res., 42(12), 1590-1600. http://dx.doi.org/10.1016/j.cemconres.2012.09.012.
  13. Karavelic, E., Nikolic, M., Ibrahimbegovic, A. and Kurtovic, A. (2019), "Concrete meso-scale model with full set of 3D failure modes with random distribution of aggregate and cement phase. Part I: Formulation and numerical implementation", Comput. Meth. Appl. Mech. Eng., 344, 1051-1072. http://dx.doi.org/10.1016/j.cma.2017.09.013.
  14. Kim, S.M. and Al-Rub, R.K.A. (2011), "Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002.
  15. Li, X. and Chen, J. (2017), "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Meth. Appl. Mech. Eng., 315, 744-759. http://dx.doi.org/10.1016/j.cma.2016.11.029.
  16. Lilliu, G. and Van Mier, J.G. (2003), "3D lattice type fracture model for concrete", Eng. Fract. Mech., 70(7-8), 927-941. http://dx.doi.org/10.1016/S0013-7944(02)00158-3.
  17. Lopez, C.M., Carol, I. and Aguado, A. (2008a), "Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior", Mater. Struct., 41(3), 583-599. http://dx.doi.org/10.1617/s11527-007-9314-1.
  18. Lopez, C.M., Carol, I. and Aguado, A. (2008b), "Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test", Mater. Struct., 41(3), 601-620. http://dx.doi.org/10.1617/s11527-007-9312-3.
  19. Mohamed, A.R. and Hansen, W. (1999), "Micromechanical modeling of concrete response under static loading-Part 1: model development and validation", Mater. J., 96(2), 196-203. http://dx.doi.org/10.14359/445.
  20. Mondal, P., Shah, S.P. and Marks, L.D. (2009), "Nanomechanical properties of interfacial transition zone in concrete", Eds. Z. Bittnar., P.M. Bartos., J. Nemecek., V Smilauer. and J. Zeman, Nanotechnology in Construction 3, Springer, Berlin, Heidelberg. http://dx.doi.org/10.1007/978-3-642-00980-8_42.
  21. Nguyen, T.T., Bui, H.H., Ngo, T.D., Nguyen, G.D., Kreher, M.U. and Darve, F. (2019), "A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression", Eng. Fract. Mech., 209, 228-244. http://dx.doi.org/10.1016/j.engfracmech.2019.01.033.
  22. Nitka, M. and Tejchman, J. (2015), "Modelling of concrete behaviour in uniaxial compression and tension with dem", Granular Matter., 17(1), 145-164. http://dx.doi.org/10.1007/s10035-015-0546-4.
  23. Ooi, E.T. and Yang, Z.J. (2011), "Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method", Eng. Fract. Mech., 78(2), 252-273. http://dx.doi.org/10.1016/j.engfracmech.2010.08.002.
  24. Pan, Z., Wang, D., Ma, R. and Chen, A. (2018), "A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles", Comput. Concrete, 22(6), 551-561. http://dx.doi.org/10.12989/cac.2018.22.6.551.
  25. Peng, Y., Wang, Q., Ying, L., Kamel, M. and Peng, H. (2019), "Numerical simulation of dynamic mechanical properties of concrete under uniaxial compression", Mater., 12(4), 643. https://doi.org/10.3390/ma12040643.
  26. Rangari, S., Murali, K. and Deb, A. (2018), "Effect of mesostructure on strength and size effect in concrete under compression", Eng. Fract. Mech., 195, 162-185. http://dx.doi.org/10.1016/j.engfracmech.2018.04.006.
  27. Roth, S.N., Leger, P. and Soulaimani, A. (2015), "A combined XFEM-damage mechanics approach for concrete crack propagation", Comput. Meth. Appl. Mech. Eng., 283, 923-955. http://dx.doi.org/10.1016/j.cma.2014.10.043.
  28. Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421. http://dx.doi.org/10.1023/B:INTS.0000042339.92990.4c.
  29. Setiawan, Y., Gan, B.S. and Han, A.L. (2017), "Modeling of the ITZ zone in concrete: Experiment and numerical simulation", Comput. Concrete, 19(6), 641-649. https://doi.org/10.12989/cac.2017.19.6.641.
  30. Shen, L., Ren, Q.W, Xia, N., Sun, L.G. and Xia, X.Z. (2015), "Mesoscopic numerical simulation of effective thermal conductivity of tensile cracked concrete", Constr. Build. Mater., 95, 467-475. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.117.
  31. Snozzi, L., Caballero, A. and Molinari, J.F. (2011), "Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading", Cement Concrete Res., 41(11), 1130-1142. http://dx.doi.org/10.1016/j.cemconres.2011.06.016.
  32. Van Mier, J.G., Van Vliet, M.R. and Wang, T.K. (2002), "Fracture mechanisms in particle composites: statistical aspects in lattice type analysis", Mech. Mater., 34(11), 705-724. http://dx.doi.org/10.1016/S0167-6636(02)00170-9.
  33. Van Vliet, M.A. and Van Mier, J.M. (1996), "Experimental investigation of concrete fracture under uniaxial compression", Mech. Cohesive-frictional Mater., 1(1), 115-127. http://dx.doi.org/10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U.
  34. Wang, G.L., Pekau, O.A., Zhang, C.H. and Wang, S.M. (2000), "Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics", Eng. Fract. Mech., 65(1), 67-87. http://dx.doi.org/10.1016/S0013-7944(99)00104-6.
  35. Wang, X.F., Yang, Z.J., Yates, J.R., Jivkov, A.P. and Zhang, C. (2015), "Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores", Constr. Build. Mater., 75, 35-45. http://dx.doi.org/10.1016/j.conbuildmat.2014.09.069.
  36. Wang, X.F., Zhang, M.Z. and Jivkov, A.P. (2016), "Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete", Int. J. Solid. Struct., 80, 310-333. http://dx.doi.org/10.1016/j.ijsolstr.2015.11.018.
  37. Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: Homogenisation and damage behavior", Finite Elem. Anal. Des., 42(7), 623-636. http://dx.doi.org/10.1016/j.finel.2005.11.008.
  38. Yang, Z.J., Su, X.T., Chen, J.F. and Liu, G.H. (2009), "Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials", Int. J. Solid. Struct., 46(17), 3222-3234. http://dx.doi.org/10.1016/j.ijsolstr.2009.04.013.
  39. Yu, Q., Liu, H., Yang, T. and Liu, H. (2018), "3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography", Int. J. Solid. Struct., 147, 204-222. https://doi.org/10.1016/j.ijsolstr.2018.05.026.
  40. Zhang, C., Zhou, W., Ma, G., Hu, C. and Li, S. (2015), "A mesoscale approach to modeling thermal cracking of concrete induced by water-cooling pipes", Comput. Concrete, 15(4), 485-501. http://dx.doi.org/10.12989/cac.2015.15.4.485.
  41. Zhang, S., Zhang, C., Liao, L. and Wang, C. (2018), "Numerical study of the effect of ITZ on the failure behaviour of concrete by using particle element modelling", Constr. Build. Mater., 170, 776-789. https://doi.org/10.1016/j.conbuildmat.2018.03.040.

Cited by

  1. Numerical study on interface optimization of new-to-old concrete with the slant grooves vol.34, 2019, https://doi.org/10.1016/j.istruc.2021.07.094