과제정보
연구 과제 주관 기관 : Kyungpook National University
참고문헌
- ACI 229 (1999), "Report on controlled low-strength materials", American Concrete Institute, Farmington Hills, Michigan, U.S.A.
- Byun, Y.H., Han, W., Tutumluer, E. and Lee, J.S. (2016), "Elastic wave characterization of controlled low-strength material using embedded piezoelectric transducers", Constr. Build. Mater., 127, 210-219. https://doi.org/10.1016/j.conbuildmat.2016.09.113.
- Chu, L.M. and Yin, J.H. (2005), "Comparison of interface shear strength of soil nails measured by both direct shear box tests and pullout tests", J. Geotech. Geoenviron. Eng., 131(9), 1097-1107. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1097)
- Chu, L.M. and Yin, J.H. (2006), "Study on soil-cement grout interface shear strength of soil nailing by direct shear box testing method", Geomech. Geoeng., 1(4), 259-273. https://doi.org/10.1080/17486020601091742.
- Do, T.M. and Kim, Y.S. (2016), "Engineering properties of controlled low strength material (CLSM) incorporating red mud", Int. J. Geo-Eng., 7(1), 7. https://doi.org/10.1186/s40703-016-0022-y.
- Do, T.M., Kim, Y.S. and Ryu, B.C. (2015), "Improvement of engineering properties of pond ash based CLSM with cementless binder and artificial aggregates made of bauxite residue", Int. J. Geo-Eng., 6(1), 8. https://doi.org/10.1186/s40703-015-0008-1.
- Dove, J.E. and Frost, J.D. (1999), "Peak friction behavior of smooth geomembrane-particle interfaces", J. Geotech. Geoenviron. Eng., 125(7), 544-555. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(544).
- Frost, J.D., DeJong, J.T. and Recalde, M. (2002), "Shear failure behavior of granular-continuum interfaces", Eng. Fract. Mech., 69(17), 2029-2048. https://doi.org/10.1016/S0013-7944(02)00075-9.
- Hossain, M.A. and Yin, J.H. (2014), "Dilatancy and strength of an unsaturated soil-cement interface in direct shear tests", Int. J. Geomech., 15(5), 04014081. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000428.
- Ilori, A.O., Udoh, N.E. and Umenge, J.I. (2017), "Determination of soil shear properties on a soil to concrete interface using a direct shear box apparatus", Int. J. Geo-Eng., 8(1), 17. https://doi.org/10.1186/s40703-017-0055-x.
- Lim, S., Lee, W., Choo, H. and Lee, C. (2017), "Utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material", Constr. Build. Mater., 157, 42-50. https://doi.org/10.1016/j.conbuildmat.2017.09.071.
- Lin, H., Zhang, L. and Xiong, Y. (2018), "Research on shear strength of needle-punched GCL by simple-shear of composite liner", Eng. Geol., 244, 86-95. https://doi.org/10.1016/j.enggeo.2018.07.022.
- Ling, T.C., Kaliyavaradhan, S.K. and Poon, C.S. (2018), "Global perspective on application of controlled low-strength material (CLSM) for trench backfilling-An overview", Constr. Build. Mater., 158, 535-548. https://doi.org/10.1016/j.conbuildmat.2017.10.050.
- Liu, J., Lv, P., Cui, Y. and Liu, J. (2014), "Experimental study on direct shear behavior of frozen soil-concrete interface", Cold Reg. Sci. Technol., 104-105, 1-6. https://doi.org/10.1016/j.coldregions.2014.04.007.
- Nakata, Y., Hyodo, M., Hyde, A.F., Kato, Y. and Murata, H. (2001), "Microscopic particle crushing of sand subjected to high pressure one-dimensional compression", Soil. Found., 41(1), 69-82. https://doi.org/10.3208/sandf.41.69.
- National Ready Mixed Concrete Association (NRMCA) (1999), "Guide specification for controlled low strength materials (CLSM), Report of national ready mixed concrete association", Specification Guide.
- Samanta, M., Punetha, P. and Sharma, M. (2018), "Effect of roughness on interface shear behavior of sand with steel and concrete surface", Geomech. Eng., 14(4), 387-398. https://doi.org/10.12989/gae.2018.14.4.387.
- Santamarina, J.C., Klein, K.A., Wang, Y.H. and Prencke, E. (2002), "Specific surface: Determination and relevance", Can. Geotech. J., 39(1), 233-241. https://doi.org/10.1139/t01-077.
- Shakir, R.R. and Zhu, J. (2009), "Behavior of compacted clayconcrete interface", Front. Archit. Civ. Eng. China, 3(1), 85-92. https://doi.org/10.1007/s11709-009-0013-6.
- Turkel, S. (2007), "Strength properties of fly ash based controlled low strength materials", J. Hazard. Mater., 147(3), 1015-1019. https://doi.org/10.1016/j.jhazmat.2007.01.132.
- Wang, L., Zou, F., Fang, X., Tsang, D.C., Poon, C.S., Leng, Z. and Baek, K. (2018), "A novel type of controlled low strength material derived from alum sludge and green materials", Constr. Build. Mater., 165, 792-800. https://doi.org/10.1016/j.conbuildmat.2018.01.078.
- Wu, X. and Yang, J. (2017), "Tests of the interface between structures and filling soil of mountain area airport", Geomech. Eng., 12(3), 399-415. https://doi.org/10.12989/gae.2017.12.3.399.
- Xiao, S., Suleiman, M.T., Elzeiny, R., Xie, H. and Al-khawaja, M. (2017), "Soil-concrete interface properties subjected to temperature changes and cycles using direct shear tests", Geotech. Front., 175-183. https://doi.org/10.1061/9780784480472.018.
- Xu, D.P., Feng, X.T. and Cui, Y.J. (2012), "A simple shear strength model for interlayer shear weakness zone", Eng. Geol., 147, 114-123. https://doi.org/10.1016/j.enggeo.2012.07.016.
- Yang, H.S., Lee, B.K., Jang, S.J. and Lee, S.G. (2012), "A study of characteristics of friction angles between sand and artificial rock interface by direct shear test", J. Kor. Geo-Environ. Soc., 13(8), 65-73.
- Zhang, C., Ji, J., Gui, Y., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM", Geomech. Eng., 11(3), 361-372. https://doi.org/10.12989/gae.2016.11.3.361.
- Zhang, J., Wang, J., Li, X., Zhou, T. and Guo, Y. (2018), "Rapidhardening controlled low strength materials made of recycled fine aggregate from construction and demolition waste", Constr. Build. Mater., 173, 81-89. https://doi.org/10.1016/j.conbuildmat.2018.04.023.
피인용 문헌
- Evaluation of equivalent friction damping ratios at bearings of welded large-scale domes subjected to earthquakes vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.517
- Experimental investigation for the use of tailings as paste-fill material through design of experiment vol.26, pp.5, 2019, https://doi.org/10.12989/gae.2021.26.5.465