Acknowledgement
Supported by : TUBITAK
References
- Aksoy, C.O., Uyar, G.G., Posluk, E., Ogul, K., Topal, I. and Kucuk, K. (2016), "Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway project", Struct. Eng. Mech., 58(5), 869-886. https://doi.org/10.12989/sem.2016.58.5.869.
- Aksoy, C.O., Genis, M., Aldas, G.G., Ozacar, V., Ozer, S.C. and Yilmaz, O. (2012), "A comparative study of the determination of rock mass Emass by using different empirical approaches", Eng. Geol., 131-132, 19-28. https://doi.org/10.1016/j.enggeo.2012.01.009
- Andersson, J.A., Munier, R., Strom, A., Soderback, B., Almen, K.E. and Olsson, L. (2004), "When is there sufficient information from the site investigations?", SKBReportR-04-23, Stockholm, Sweden, www.skb.se.
- Azarafza, M., Akgun, H. and Asghari-Kaljahi, E. (2017), "Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran", Geomech. Eng., 13(4), 571-584. https://doi.org/10.12989/gae.2017.13.4.571.
- Barla, G. (1995), "Tunneling under squeezing rock conditions", Project no: 9708328160/1998, Politecnico di Torino, Turin, Italy.
- Barton, N. (2002), "Some new Q value correlations to assist in site characterization and tunnel design", Int. J. Rock Mech. Min. Sci., 39, 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.
- Bieniawski, Z.T. (1973), "Engineering classification of jointed rock masses", Trans. S. Afr. Inst. Civ. Eng., 15(12), 335-344.
- Edelbro, C., Sjoberg, J. and Nordlund, E. (2006), "A quantitative comparison of strength criteria for hard rock masses", Tunn. Undergr. Sp. Technol., 22(1), 57-68. https://doi.org/10.1016/j.tust.2006.02.003.
- Feng, X.T. and An, H. (2004), "Hybrid intelligent method optimization of a soft rock replacement scheme for a large cavern excavated in alternate hard and soft rock strata", Int. J. Rock Mech. Min. Sci., 41(4), 655-667. https://doi.org/10.1016/j.ijrmms.2004.01.005.
- Feng, X.T. and Hudson, J.A. (2004), "The ways ahead for rock engineering design methodologies", Int. J. Rock Mech. Min. Sci., 41(2), 255-273. https://doi.org/10.1016/S1365-1609(03)00112-6.
- Feng, X.T. and Hudson, J.A. (2010), "Specifying the information required for rock mechanics modelling and rock engineering design", Int. J. Rock Mech. Min. Sci., 47(2), 179-194. https://doi.org/10.1016/j.ijrmms.2009.12.009.
- Geany-The Flyweight IDE (2018), Geany Code Editor, Oberhausen, Germany. https://www.geany.org/download/releases/
- Gokceoglu, C., Sonmez, H. and Kayabasi, A. (2003), "Predicting the deformation moduli of rock masses", Int. J. Rock Mech. Min. Sci., 40(5), 701-710. https://doi.org/10.1016/S1365-1609(03)00062-5.
- Gu, J. (2015), "Some practical considerations in designing underground station structures for seismic loads", Struct. Eng. Mech., 54(3), 491-500. https://doi.org/10.12989/sem.2015.54.3.491.
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
- Hoek, E. and Diederichs, M.S. (2006), "Empirical estimation of rock mass modulus", Int. J. Rock Mech. Min. Sci., 43, 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005.
- Hudson, J.A. and Feng, X.T. (2007), "Updated flowcharts for rock mechanics modelling and rock engineering design", Int. J. Rock Mech. Min. Sci., 44(2), 174-195. https://doi.org/10.1016/j.ijrmms.2006.06.001.
- Intel Parallel Studio XE (2017), Intel Parallel Studio XE for Windows Visual Fortran Compiler, U.S.A. https://software.intel.com/en-us/parallel-studio-xe/choosedownload/free-trial-cluster-windows-c-fortran.
- Jing, L. and Hudson, J.A. (2002), "Numerical methods in rock mechanics", Int. J. Rock Mech. Min. Sci., 39(4), 409-427. https://doi.org/10.1016/S1365-1609(02)00065-5.
- Kayabasi A. Gokceoglu, C. and Ercanoglu, M. (2003), "Estimating the deformation modulus of rock masses: A comparative study", Int. J. Rock Mech. Min. Sci., 40, 55-63. https://doi.org/10.1016/S1365-1609(02)00112-0.
- Mazzoccola, D.F., Millar, D.L. and Hudson, J.A. (1997), "Information, uncertainty and decision making in site investigation for rock engineering", Geotech. Geol. Eng., 15(2), 145-180. https://doi.org/10.1007/BF00880754.
- Mitri, H.S., Edrissi, R. and Henning, J. (1994), "Finite element modelling of cable-bolted stopes in hardrock ground mines", Proceedings of the SME Annual Meeting, Albuquerque, New Mexico, U.S.A., February.
- Nicholson, G.A. and Bieniawski, Z.T. (1990), "A nonlinear deformation modulus based on rock mass classification", Int. J. Min. Geol. Eng., 8(3), 181-202. https://doi.org/10.1007/BF01554041.
- Palchik, V. (2018), "Applicability of exponential stress-strain models for carbonate rocks", Geomech. Eng., 15(3), 919-925. https://doi.org/10.12989/gae.2018.15.3.919.
- Palmstrom, A. and Singh, R. (2001), "The deformation modulus of rock masses-comparisons between in situ tests and indirect estimates", Tunn. Undergr. Sp. Technol., 16(2), 115-131. https://doi.org/10.1016/S0886-7798(01)00038-4.
- Palmstrom, A. and Stille, H. (2007), "Ground behaviour and rock engineering tools for underground excavations", Tunn. Undergr. Sp. Technol., 22(4), 363-376. https://doi.org/10.1016/j.tust.2006.03.006.
- Palmstrom, A. (1995), "RMi-a rock mass characterization system for rock engineering purposes", Ph.D. Thesis, University of Oslo, Oslo, Norway.
- Palmstrom, A. (1996), "Characterizing rock masses by the RMi for use in practical rock engineering, Part 2: Some practical applications of the rock mass index (RMi)", Tunn. Undergr. Sp. Technol., 11(3), 287-303. https://doi.org/10.1016/0886-7798(96)00028-4.
- Plaxis (2018), Plaxis Geotechnical Engineering Software, Tutorial.
- Read, S.A.L., Richards, L.R. and Perrin, N.D. (1999), "Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks", Proceedings of the 9th International Congress on Rock Mechanics, Paris, France, August.
- Rooh, A., Nejati, H.R. and Goshtasbi, K. (2018), "A new formulation for calculation of longitudinal displacement profile (LDP) on the basis of rock mass quality", Geomech. Eng., 16(5), 539-545. https://doi.org/10.12989/gae.2017.13.4.571.
- Sefarim, J.L. and Pereira, J.P. (1983), "Consideration of the geomechanics classification of Bieniawski", Proceedings of the International Symposium on Engineering Geololgy and Underground Construction, Lisbon, Portugal.
- Sonmez, H., Gokceoglu, C. and Ulusay, R. (2004), "Indirect determination of the modulus of deformation of rock masses based on the GSI system", Int. J. Rock Mech. Min. Sci., 41(5), 849-857. https://doi.org/10.1016/j.ijrmms.2003.01.006
- Sonmez, H., Gokceoglu, C., Nefeslioglu, H.A. and Kayabasi, A. (2006), "Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation", Int. J. Rock Mech. Min. Sci., 43(2), 224-235. https://doi.org/10.1016/j.ijrmms.2005.06.007.
- Taravati, H. and Ardakani, A. (2018), "The numerical study of seismic behavior of gravity retaining wall built near rock face", Earthq. Struct., 14(2), 179-186. https://doi.org/10.12989/eas.2018.14.2.179.
- Zhang, Y., Ding, X., Huang, S., Qin, Y., Li, P. and Li, Y. (2018), "Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern", Geomech. Eng., 16(4), 339-413. https://doi.org/10.12989/gae.2018.16.4.399.
Cited by
- A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum vol.21, pp.1, 2019, https://doi.org/10.12989/gae.2020.21.1.023