DOI QR코드

DOI QR Code

Preparation and Physical Properties of Aqueous Polyurethane Based on Mono Methyl Ether for Skin Layer Coating

Skin layer 코팅에 사용되는 Mono Methyl Ether 기반 수성 폴리우레탄의 제조 및 물리적 성질

  • Lee, Joo-Youb (Department of Fire and Disaster Prevention Engineering, Jungwon University)
  • Received : 2019.06.08
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

In this study, polyether polyol polypropylene glycol and isophorone diisocyanate (IPDI) were synthesized based on polyrupopylene mono methyl eher (PM) for the synthesis of water - soluble polyurethane for coating on leather skin layer. After synthesis of prepolymer, PM was added at $40^{\circ}C$ to 1M, 2M, 3M, and 4M to inhibit the viscosity rise, and neutralization reaction and chain extension reaction were carried out to prepare polyurethane samples. According to the measurement results of the tensile strength, elongation and adhesive strength of the prepared sample, the tensile strength was 2.109 kgf / mm2 for PM 1M, 1.721kgf / mm2 for 4M, elongation was 496% for PM 1M, 522% for 4M, adhesion was 1.114 kgf / cm for PM 1M and 0.99 kgf / cm for 4M.

본 연구에서는 가죽 스킨층에 코팅용으로 사용할 수용성 폴리우레탄의 합성을 위해 polyrupopylene mono methyl ether (PM)를 기반으로 폴리 에테르 폴리올인 폴리 프로필렌 글리콜과 이소포론 디 이소시아네이트 (isophorone diisocyanate, IPDI)를 합성 하였다. 예비 중합체의 합성 후, 점도 상승을 억제하기 위해 $40^{\circ}C$에서 1M, 2M, 3M 및 4M으로 PM을 첨가하고 중화 반응 및 사슬연장 반응을 수행하여 폴리 우레탄 시료를 준비 하였다. 준비된 시료의 인장강도와 연신율, 접착강도를 측정한 결과로 인장강도는 PM 이 1M 일 때 2.109 kgf/mm2, 4M 에서 1.721kgf/mm2, 연신율은 PM이 1M일 때 496%, 4M 에서 522%, 접착력은 PM이 1M 일 때 1.114 kgf/cm, 4M 에서 0.99 kgf/cm 로 확인 되었다.

Keywords

HGOHBI_2019_v36n2_524_f0001.png 이미지

Fig. 1. Synthesis of water-dispersed polyurethane using Prolylene glycol monomethyl ether(PM)

HGOHBI_2019_v36n2_524_f0002.png 이미지

Fig. 2. Graph of tensile strength of samples with propylene glycol mono methyl ether.

HGOHBI_2019_v36n2_524_f0003.png 이미지

Fig. 3. A graph of elongation measurement of a sample to which propylene glycol mono methyl ether is applied.

HGOHBI_2019_v36n2_524_f0004.png 이미지

Fig. 5. Confirmation of the degree of surface fracture after adhesion according to the composition of propylene glycol mono methyl ether determined by SEM.

HGOHBI_2019_v36n2_524_f0005.png 이미지

Fig. 4. A graph of adhesion strength measurement of a sample to which propylene glycol monomethyl ether was applied.

Table 1. Preparation of raw materials for polyurethane synthesis using propylene glycol mono methyl ether

HGOHBI_2019_v36n2_524_t0001.png 이미지

Table 2. Tensile Strength, Elongation, Adhesive Strength Properties of Samples with propylene glycol mono methyl pther

HGOHBI_2019_v36n2_524_t0002.png 이미지

References

  1. S. Sauve, S. Bernard, P. Sloan, "Environmental sciences, sustainable development and circular economy: alternative concepts for trans-disciplinary research", Environ. Vol. 17, pp. 48-56, (2016).
  2. A. Ghosal, S. Ahmad, "High performance anti-corrosive epoxy-titania hybrid nanocomposite coatings", New J. Chem. Vol. 41, pp. 4599-4610, (2017). https://doi.org/10.1039/C6NJ03906E
  3. P. Lulinski, "Molecularly imprinted polymers based drug delivery devices: a way to application in modern pharmacotherapy". Mater. Sci. Eng. Vol. 76, pp. 1344-1353, (2017). https://doi.org/10.1016/j.msec.2017.02.138
  4. E. Sharmin, D. Akram, A. Ghosal, O.U. Rahman, F. Zafar, S. Ahmad, "preparation and characterization of nanostructured biohybrid', Prog. Org. Coat. Vol. 72, pp. 169-472, (2011).
  5. A. Ghosal, O.U. Rahman, S. Ahmad, "High-performance soya polyurethane networked silica hybrid nanocomposite coatings", Ind. Eng. Chem. Res. Vol. 54, pp. 12770-12787, (2015). https://doi.org/10.1021/acs.iecr.5b02098
  6. S. Khan, S. Masood, K. Siddiqui, M. Alam, F. Zafar, Q.M. Rizwanul Haque, N. Nishat, "Utilization of renewable waste material for the sustainable development of thermally stable and biologically active aliphatic amine modified Cardanol (phenoliclipid) - formaldehyde free standing films", J. Clean. Prod. Vol. 196, pp. 1644-1656, (2018). https://doi.org/10.1016/j.jclepro.2018.06.081
  7. M.P. Ansell, R.J. Ball, M. Lawrence, D. Maskell, A. Shea, P. Walker, Green composites for the built environment, p.123-148, Green Compos, (2017).
  8. D. Akram, E. Sharmin, S. Ahmad, "Linseed polyurethane/tetraethoxyorthosilane/ fumed silica hybrid nanocomposite coatings: Physico-mechanical and potentiodynamic polarization measurements studies", Prog. Org. Coat. Vol. 77, pp. 957-964, (2014). https://doi.org/10.1016/j.porgcoat.2014.01.024
  9. S. Miao, P. Wang, Z. Su, S. Zhang, "Vegetable-oil-based polymers as future polymeric biomaterials", Acta Biomater. Vol. 10, pp. 1692-1704, (2014). https://doi.org/10.1016/j.actbio.2013.08.040
  10. M. Alam, D. Akram, E. Sharmin, F. Zafar, S. Ahmad, "Vegetable oil based ecofriendly coating materials: a review article", Arab. J. Chem. Vol. 7, pp. 469-479, (2014) https://doi.org/10.1016/j.arabjc.2013.12.023
  11. V. Garcia-Pacios, V. Costa, M. Colera, JM. Martin-Martinez. "Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings". Prog Org Coat, Vol. 71, pp. 36-49, (2011). https://doi.org/10.1016/j.porgcoat.2010.12.007
  12. I.W. Cheong, H. C. Kong, J.S. Shin, J. H. Kim. "Kinetic aspects of chain extension reaction using water-soluble diamines in aqueous polyurethane dispersion". J Disper Sci Technol, Vol. 23, pp. 1-8, (2002). https://doi.org/10.1080/01932690208984184
  13. Y. S. Kwak, S.W. Park, Y H. Lee, H. D. Kim. "Preparation and properties of waterborne polyurethanes for watervapor-permeable coating materials". J Appl Polym Sci, Vol. 89, pp. 123-129, (2003). https://doi.org/10.1002/app.12128
  14. S. M. Cakic, I. S. Ristic, I. Krakovsky, D. T. Stojiljkovis, P. Belsky, L. Kollova. "Crystallizationand thermal properties in waterborne polyurethane elastomers: influence of mixed soft segment block". Mater Chem Phys, Vol. 144, pp. 31-40, (2014). https://doi.org/10.1016/j.matchemphys.2013.12.008
  15. U. Dorn, S. Enders, "Heat of mixing and liquideliquid-equilibrium of water + polypropylene glycol (PPG) with different molecular weights and water + propylene glycol dimethyl ether", Fluid Phase Equilibria, Vol. 424, pp. 58-67, (2016). https://doi.org/10.1016/j.fluid.2015.10.003