DOI QR코드

DOI QR Code

On-line Motion Synthesis Using Analytically Differentiable System Dynamics

분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법

  • Received : 2019.06.11
  • Accepted : 2019.06.22
  • Published : 2019.07.14

Abstract

In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

물리기반 캐릭터 애니메이션에서 궤적 최적화(trajectory optimization) 기법은 캐릭터 동작에 대한 시스템 동역학 모델(system dynamics model)에 기반하여 가까운 최적의 미래 상태를 예측하여 캐릭터의 동작을 자동적으로 생성하는데 널리 사용되어 왔다. 캐릭터와 환경 간의 접촉 현상을 강체 충돌로 다루는 경우 일반적으로 시스템 동역학 모델은 그 수식이 닫힌 형식(closed form)으로 유도되지 못하고 미분이 불가능하다. 따라서 최근까지 많은 연구자들이 접촉 완화(contact smoothing) 기법을 통해 시스템 동역학의 수치적 미분에 기반한 효율적인 궤적 최적화 기법을 발표해 왔다. 하지만 수치적 미분 정보는 분석적 미분과 달리 부정확하기 때문에 궤적 최적화의 안정성에 영향을 미칠 수 있다. 이 문제를 해결하기 위해 본 논문에서는 접촉 완화 모델에 대한 근사화를 통해 시스템 동역학을 분석적으로 미분하여 닫힌 형식의 도함수를 유도하고, 이를 기반으로 사용자의 온라인 입력에 따라 예제 데이터 없이 이족 캐릭터의 동작을 안정적으로 생성하는 예측 제어 기법(model predictive control (MPC))을 제안한다.

Keywords

References

  1. Mordatch, Igor, Martin De Lasa, and Aaron Hertzmann. "Robust physics-based locomotion using low-dimensional planning." ACM Transactions on Graphics (TOG). Vol. 29. No. 4. ACM, 2010.
  2. Tassa Y., Erez T., Todorov E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on (2012), IEEE, pp. 4906-4913.
  3. Han, Daseong, Haegwang Eom, and Junyong Noh. "Data-guided Model Predictive Control Based on Smoothed Contact Dynamics." Computer Graphics Forum. Vol. 35. No. 2. 2016.
  4. Todorov E.: Convex and analytically-invertible dynamics with contacts and constraints: Theory and implementation in mujoco. In IEEE Conference on Robotics and Automation (ICRA) (2014).
  5. Witkin, Andrew, and Michael Kass. "Spacetime constraints." ACM Siggraph Computer Graphics 22.4 (1988): 159-168. https://doi.org/10.1145/378456.378507
  6. Liu, C. Karen, Aaron Hertzmann, and Zoran Popovic. "Composition of complex optimal multi-character motions." Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2006.
  7. da Silva, Marco, Yeuhi Abe, and Jovan Popovic. "Interactive simulation of stylized human locomotion." ACM Transactions on Graphics (TOG) 27.3 (2008): 82. https://doi.org/10.1145/1360612.1360681
  8. Muico, Uldarico, et al. "Contact-aware nonlinear control of dynamic characters." ACM Transactions on Graphics (TOG). Vol. 28. No. 3. ACM, 2009.
  9. Muico, Uldarico, Jovan Popovic, and Zoran Popovic. "Composite control of physically simulated characters." ACM Transactions on Graphics (TOG) 30.3 (2011): 16.
  10. Kwon, Taesoo, and Jessica Hodgins. "Control systems for human running using an inverted pendulum model and a reference motion capture sequence." Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 2010.
  11. Han, Daseong, et al. "On-line real-time physics-based predictive motion control with balance recovery." Computer Graphics Forum. Vol. 33. No. 2. 2014.
  12. Hamalainen, Perttu, et al. "Online motion synthesis using sequential monte carlo." ACM Transactions on Graphics (TOG) 33.4 (2014): 51.
  13. Hamalainen, Perttu, Joose Rajamaki, and C. Karen Liu. "Online control of simulated humanoids using particle belief propagation." ACM Transactions on Graphics (TOG) 34.4 (2015): 81.
  14. Peng, Xue Bin, et al. "Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement learning." ACM Transactions on Graphics (TOG) 36.4 (2017): 41.
  15. Liu, Libin, and Jessica Hodgins. "Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning." ACM Transactions on Graphics (TOG) 37.4 (2018): 142.
  16. Peng, Xue Bin, et al. "Deepmimic: Example-guided deep reinforcement learning of physics-based character skills." ACM Transactions on Graphics (TOG) 37.4 (2018): 143.
  17. Guenter, Brian. "Efficient symbolic differentiation for graphics applications." ACM Transactions on Graphics (TOG). Vol. 26. No. 3. ACM, 2007.
  18. Guenter, Brian, and Sung-Hee Lee. "Symbolic Lagrangian Multibody Dynamics." Tech. rep., Microsoft Research (2009).
  19. Featherstone, Roy. Rigid body dynamics algorithms. Springer, 2014.
  20. Yamane, Katsu, and Yoshihiko Nakamura. "A numerically robust LCP solver for simulating articulated rigid bodies in contact." Proceedings of robotics: science and systems IV, Zurich, Switzerland 19 (2008): 20.
  21. Jacobson D., Mayne D.: Differential dynamic programming. 1970.
  22. Mordatch, Igor, et al. "Animating human lower limbs using contact-invariant optimization." ACM Transactions on Graphics (TOG) 32.6 (2013): 203.
  23. Lee, Yoonsang, et al. "Locomotion control for many-muscle humanoids." ACM Transactions on Graphics (TOG) 33.6 (2014): 218.
  24. Wang, Jack M., David J. Fleet, and Aaron Hertzmann. "Optimizing walking controllers." ACM Transactions on Graphics (TOG). Vol. 28. No. 5. ACM, 2009.

Cited by

  1. 확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크 vol.27, pp.1, 2019, https://doi.org/10.15701/kcgs.2021.27.1.9