References
- S. Gottschalk, M. C. Lin, and D. Manocha, "OBBTree A Hierarchical Structure for Rapid Interference Detection," ACM Transactions on Graphics (SIGGRAPH 1996), vol. 15, no. 3, pp. 171-180, 1996.
- E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, "Fast Proximity Queries with Swept Sphere Volumes," Dept. of Computer Science, UNC, Chapel Hill, NC, Tech. Rep., 1999.
- E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, "Fast distance queries with rectangular swept sphere volumes," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 4, 2000, pp. 3719-3726.
- D. S. Meek and D. J. Walton, "Approximating smooth planar curves by arc splines," Journal of Computational and Applied Mathematics, vol. 59, no. 2, pp. 221-231, 1995. https://doi.org/10.1016/0377-0427(94)00029-Z
- M. Barton and G. Elber, "Spiral fat arcs-Bounding regions with cubic convergence," Graphical Models, vol. 73, no. 2, pp. 50-57, 2011. https://doi.org/10.1016/j.gmod.2010.10.005
- Y.-J. Kim, Y.-T. Oh, J. Lee, S.-H. Yoon, and M.-S. Kim, "Data structures for accelerating geometric operations on freeform objects," in Korea Computer Graphics Society 2011 Proceeding, 2011, pp. 71-72.
- Y.-J. Kim, J. Lee, M.-S. Kim, and G. Elber, "Efficient offset trimming for planar rational curves using biarc trees," Computer Aided Geometric Design, vol. 29, no. 7, pp. 555-564, 2012. https://doi.org/10.1016/j.cagd.2012.03.014
- J. Lee, Y.-J. Kim, M.-S. Kim, and G. Elber, "Efficient offset trimming for deformable planar curves using a dynamic hierarchy of bounding circular arcs," Computer-Aided Design, vol. 58, pp. 248-255, 2015. https://doi.org/10.1016/j.cad.2014.08.031
- F. Aurenhammer, "Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure," ACM Computing Surveys (CSUR), vol. 23, no. 3, pp. 345-405, 1991. https://doi.org/10.1145/116873.116880
- O. Aichholzer,W. Aigner, F. Aurenhammer, T. Hackl, B. Juttler, and M. Rabl, "Medial axis computation for planar free-form shapes," Computer-Aided Design, vol. 41, no. 5, pp. 339-349, 2009. https://doi.org/10.1016/j.cad.2008.08.008
- O. Aichholzer,W. Aigner, F. Aurenhammer, T. Hackl, B. Juttler, E. Pilgerstorfer, and M. Rabl, "Divide-and-conquer for Voronoi diagrams revisited," Computational geometry, vol. 43, no. 8, pp. 688-699, 2010. https://doi.org/10.1016/j.comgeo.2010.04.004
- J. Lee, Y.-J. Kim, M.-S. Kim, and G. Elber, "Efficient voronoi diagram construction for planar freeform spiral curves," Computer Aided Geometric Design, vol. 43, pp. 131-142, 2016. https://doi.org/10.1016/j.cagd.2016.02.008
- S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar, "Rapid and Accurate Contact Determination between Spline Models using ShellTrees," in Computer Graphics Forum, vol. 17, no. 3, 1998, pp. 315-326. https://doi.org/10.1111/1467-8659.00278
- G. Bradshaw and C. O'Sullivan, "Sphere-Tree Construction using Dynamic Medial Axis Approximation," in Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2002, pp. 33-40.
- X.-M. Liu, L. Yang, J.-H. Yong, H.-J. Gu, and J.-G. Sun, "A torus patch approximation approach for point projection on surfaces," Computer Aided Geometric Design, vol. 26, no. 5, pp. 593-598, 2009. https://doi.org/10.1016/j.cagd.2009.01.004
- S.-M. Hu and J. Wallner, "A second order algorithm for orthogonal projection onto curves and surfaces," Computer Aided Geometric Design, vol. 22, no. 3, pp. 251-260, 2005. https://doi.org/10.1016/j.cagd.2004.12.001
- D.-S. Kim, P. Y. Papalambros, and T. C. Woo, "Tangent, normal, and visibility cones on Bezier surfaces," Computer Aided Geometric Design, vol. 12, no. 3, pp. 305-320, 1995. https://doi.org/10.1016/0167-8396(94)00016-L
- M. Daniel, "Using a Convex Pyramid to Bound Surface Normal Vectors," in Computer graphics forum, vol. 15, no. 4, 1996, pp. 219-227. https://doi.org/10.1111/1467-8659.1540219
- K.-R. Park and G.-I. Kim, "Offsets of ruled surfaces," Journal of the Korea Computer Graphics Society, vol. 4, no. 2, pp. 69-75, 1998.
- R. T. Farouki, "The approximation of non-degenerate offset surfaces," Computer Aided Geometric Design, vol. 3, no. 1, pp. 15-43, 1986. https://doi.org/10.1016/0167-8396(86)90022-1
- G. Elber and E. Cohen, "Error bounded variable distance offset operator for free form curves and surfaces," International Journal of Computational Geometry & Applications, vol. 1, no. 01, pp. 67-78, 1991. https://doi.org/10.1142/S0218195991000062
- G. Elber, I.-K. Lee, and M.-S. Kim, "Comparing offset curve approximation methods," IEEE computer graphics and applications, vol. 17, no. 3, pp. 62-71, 1997. https://doi.org/10.1109/38.586019
- R. Martin, "Principal patches-a new class of surface patch based on differential geometry," in Eurographics, vol. 83, 1983, pp. 47-55.
- R. T. Farouki, "Exact offset procedures for simple solids," Computer Aided Geometric Design, vol. 2, no. 4, pp. 257-279, 1985. https://doi.org/10.1016/S0167-8396(85)80002-9
- M. Tang, M. Lee, and Y. J. Kim, "Interactive hausdorff distance computation for general polygonal models," ACM Transactions on Graphics (TOG), vol. 28, no. 3, p. 74, 2009. https://doi.org/10.1145/1531326.1531380
- M. Barton, I. Hanniel, G. Elber, and M.-S. Kim, "Precise hausdorff distance computation between polygonal meshes," Computer Aided Geometric Design, vol. 27, no. 8, pp. 580-591, 2010. https://doi.org/10.1016/j.cagd.2010.04.004
- Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber, "Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer," The Visual Computer, vol. 26, no. 6-8, pp. 1007-1016, 2010. https://doi.org/10.1007/s00371-010-0477-3
- M. Guthe, P. Borodin, and R. Klein, "Fast and accurate hausdorff distance calculation between meshes," Journal of WSCG, vol. 13, no. 2, 2005.
- Y. Kang, M.-H. Kyung, S.-H. Yoon, and M.-S. Kim, "Fast and robust Hausdorff distance computation from triangle mesh to quad mesh in near-zero cases," Computer Aided Geometric Design, vol. 62, pp. 91-103, 2018. https://doi.org/10.1016/j.cagd.2018.03.017
- I. Hanniel, A. Krishnamurthy, and S. McMains, "Computing the Hausdorff distance between NURBS surfaces using numerical iteration on the GPU," Graphical Models, vol. 74, no. 4, pp. 255-264, 2012. https://doi.org/10.1016/j.gmod.2012.05.002
- A. Krishnamurthy, S. McMains, and I. Hanniel, "GPU-accelerated Hausdorff distance computation between dynamic deformable NURBS surfaces," Computer-Aided Design, vol. 43, no. 11, pp. 1370-1379, 2011. https://doi.org/10.1016/j.cad.2011.08.022
- Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber, "Efficient Hausdorff distance computation for freeform geometric models in close proximity," Computer-Aided Design, vol. 45, no. 2, pp. 270-276, 2013. https://doi.org/10.1016/j.cad.2012.10.010
- D. Filip, R. Magedson, and R. Markot, "Surface algorithms using bounds on derivatives," Computer Aided Geometric Design, vol. 3, no. 4, pp. 295-311, 1986. https://doi.org/10.1016/0167-8396(86)90005-1
- M. P. Do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition, 2016.
- Y. Kang, J. Jang, and M.-S. Kim, "Deformable quad mesh for accelerated geometric operations," in Korea Computer Graphics Society 2015 Proceeding, 2011, pp. 73-74.
- P. Du, Y. J. Kim, and S.-E. Yoon, "TSS BVHs: tetrahedron swept sphere BVHs for ray tracing subdivision surfaces," Computer Graphics Forum, vol. 35, no. 7, pp. 279-288, 2016. https://doi.org/10.1111/cgf.13025
- N. M. Patrikalakis, "Surface-to-surface intersections," IEEE Computer Graphics and Applications, vol. 13, no. 1, pp. 89-95, 1993. https://doi.org/10.1109/38.180122
- K.-J. Kim, J.-K. Seong, and M.-S. Kim, "Computing intersection between freeform surfaces," Journal of the Korea Computer Graphics Society, vol. 10, no. 3, pp. 28-33, 2004.
- K.-J. Kim, M.-S. Kim, and K. Oh, "Torus/Sphere Intersection Based on a Configuration Space Approach," Graphical Models and Image Processing, pp. 77-92, 1998. https://doi.org/10.1006/gmip.1997.0451
- K.-J. Kim, "Circles in torus-torus intersections," Journal of Computational and Applied Mathematics, vol. 236, no. 9, pp. 2387-2397, 2012. https://doi.org/10.1016/j.cam.2011.11.025
-
G. Elber and T. Grandine, "Hausdorff and Minimal Distances between Parametric Freeforms in
${\mathbb{R}}^2$ and${\mathbb{R}}^3$ ," in International Conference on Geometric Modeling and Processing, 2008, pp. 191-204.