DOI QR코드

DOI QR Code

Simultaneous Simplification of Multiple Triangle Meshes for Blend Shape

블렌드쉐입을 위한 다수 삼각 메쉬의 동시 단순화 기법

  • 박정호 (동국대학교 멀티미디어공학과) ;
  • 김종용 (동국대학교 영상대학원 멀티미디어학과) ;
  • 송종훈 (동국대학교 영상대학원 멀티미디어학과) ;
  • 박상훈 (동국대학교 영상대학원 멀티미디어학과) ;
  • 윤승현 (동국대학교 멀티미디어공학과)
  • Received : 2019.06.08
  • Accepted : 2019.06.23
  • Published : 2019.07.14

Abstract

In this paper we present a new technique for simultaneously simplifying N triangule meshes with the same number of vertices and the same connectivities. Applying the existing simplification technique to each of the N triangule mesh creates a simplified mesh with the same number of vertices but different connectivities. These limits make it difficult to construct a simplified blend-shape model in a high-resolution blend-shape model. The technique presented in this paper takes into account the N meshes simultaneously and performs simplification by selecting an edge with minimal removal cost. Thus, the N simplified meshes generated as a result of the simplification retain the same number of vertices and the same connectivities. The efficiency and effectiveness of the proposed technique is demonstrated by applying simultaneous simplification technique to multiple triangle meshes.

본 논문에서는 동일한 정점의 수와 연결 정보를 갖는 N개의 삼각 메쉬의 형상을 동시에 단순화하는 새로운 기법을 제시한다. 기존의 단순화 기법을 N개의 삼각 메쉬에 각각 적용하면, 정점의 개수는 같지만 삼각형을 구성하는 연결 정보가 서로 다른 단순화 메쉬를 생성한다. 이러한 한계는 고해상도 블렌드쉐입(blend shape) 모델에서 단순화된 블렌드쉐입 모델을 구성하는 것을 어렵게 한다. 본 논문에서 제시된 기법은 N개 메쉬 형상을 동시에 고려하여 최소의 제거 비용을 갖는 에지를 선택하여 단순화를 수행한다. 따라서 단순화 결과로 생성된 N개의 단순화 메쉬는 동일한 정점의 수와 연결 정보를 유지하게 된다. 다양한 얼굴 표정을 갖는 고해상도 블렌드쉐입 모델에 동시 단순화 기법을 적용하여 단순화된 블렌드쉐입 모델을 생성함으로써 제안된 기법의 효율성과 유효성을 입증한다.

Keywords

References

  1. 신유성, "브랜드쉐입을 이용한 캐릭터제작 파이프라인 구축에관한연구,"커뮤니케이션디자인학연구, vol. 49, no. 2, pp. 86-95, 2014.
  2. J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Z. Deng, "Practice and Theory of Blendshape Facial Models," in Eurographics 2014 - State of the Art Reports. The Eurographics Association, 2014.
  3. F. I. Parke, "Computer generated animation of faces," in Proceedings of the ACM Annual Conference - Volume 1, 1972, pp. 451-457.
  4. J. Lewis, J. Mooser, Z. Deng, and U. Neumann, A User Interface Technique for Controlling Blendshape Interference, 2007, pp. 132-144.
  5. J. Seo, G. Irving, J. Lewis, and J. Noh, "Compression and direct manipulation of complex blendshape models," in ACM Transactions on Graphics (TOG), vol. 30, no. 6, 2011, p. 164. https://doi.org/10.1145/2070781.2024198
  6. T. Costigan, A. Gerdelan, E. Carrigan, and R. McDonnell, "Improving blendshape performance for crowds with GPU and GPGPU techniques," in Proceedings of the 9th International Conference on Motion in Games, 2016, pp. 73-78.
  7. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, "Decimation of triangle meshes," SIGGRAPH Comput. Graph., vol. 26, no. 2, pp. 65-70, 1992. https://doi.org/10.1145/142920.134010
  8. G. Turk, "Re-tiling polygonal surfaces," SIGGRAPH Comput. Graph., vol. 26, no. 2, pp. 55-64, 1992. https://doi.org/10.1145/142920.134008
  9. A. D. Kalvin and R. H. Taylor, "Superfaces: Polygonal mesh simplification with bounded error," IEEE Computer Graphics and Applications, vol. 16, no. 3, pp. 64-77, 1996. https://doi.org/10.1109/38.491187
  10. M. Garland and P. S. Heckbert, "Surface simplification using quadric error metrics," in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH '97, 1997, pp. 209-216.
  11. A. Gueziec, Surface simplification inside a tolerance volume. IBM TJ Watson Research Center, 1996.
  12. P. Cignoni, C. Montani, and R. Scopigno, "A comparison of mesh simplification algorithms," Computers & Graphics, vol. 22, no. 1, pp. 37-54, 1998. https://doi.org/10.1016/S0097-8493(97)00082-4
  13. M. Pauly, M. Gross, and L. P. Kobbelt, "Efficient simplification of point-sampled surfaces," in Proceedings of the conference on Visualization'02, 2002, pp. 163-170.
  14. S.-J. Kim, S.-K. Kim, and C.-H. Kim, "Discrete differential error metric for surface simplification," in In Proc. of 10th Pacific Conference on Computer Graphics and Applications, 2002, pp. 276-283.
  15. R. Yi, Y.-J. Liu, and Y. He, "Delaunay mesh simplification with differential evolution," in SIGGRAPH Asia 2018 Technical Papers. ACM, 2018, p. 263.
  16. L. Kettner, "Using generic programming for designing a data structure for polyhedral surfaces," Computational Geometry, vol. 13, no. 1, pp. 65-90, 1999. https://doi.org/10.1016/S0925-7721(99)00007-3
  17. M. Garland and P. S. Heckbert, "Simplifying surfaces with color and texture using quadric error metrics," in In Proc. of Visualization'98, 1998, pp. 263-269.