DOI QR코드

DOI QR Code

In vitro mass propagation and acclimatization of Haworthia truncata

하월시아 옥선(Haworthia truncata)의 기내 대량 증식 및 순화 조건 구명

  • Kim, Youn Hee (Cactus and Succulents Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Lee, Gee Young (Cactus and Succulents Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Kim, Hye Hyeong (Horticultural Research Division) ;
  • Lee, Jae Hong (Cactus and Succulents Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Jung, Jae Hong (Cactus and Succulents Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Lee, Sang Deok (Cactus and Succulents Research Institute, Gyeonggi-do Agricultural Research and Extension Services)
  • 김윤희 (경기도농업기술원 선인장다육식물연구소) ;
  • 이지영 (경기도농업기술원 선인장다육식물연구소) ;
  • 김혜형 (경기도농업기술원 원예연구과) ;
  • 이재홍 (경기도농업기술원 선인장다육식물연구소) ;
  • 정재홍 (경기도농업기술원 선인장다육식물연구소) ;
  • 이상덕 (경기도농업기술원 선인장다육식물연구소)
  • Received : 2019.04.13
  • Accepted : 2019.05.17
  • Published : 2019.06.30

Abstract

The purpose of this study was to investigate suitable parts for callus induction and optimal concentrations of growth regulators, contained in the medium affecting shoot and rooting for in vitro mass production of Haworthia truncata. Leaves and flower bud showed 100% callus formation rate at NAA $1{\sim}2mgL^{-1}$ treatment, and NAA $1mgL^{-1}$ + TDZ $2mgL^{-1}$ treatment. The flower stalk showed 75% callus formation rate, at NAA $2mgL^{-1}$ + TDZ $2mgL^{-1}$ treatment in H. truncata. While the rate of callus formation was high in leaves and flower bud, leaves were the most efficient in obtaining most culture parts. Shoot induction rate from callus was highest, at NAA $0.1mgL^{-1}$ treatment in H. truncata. Additionally, the number of shoots formation was 66.3 shoots high, in NAA $1mgL^{-1}$ + BA $0.1mgL^{-1}$ treatment in H. truncata. In the case of acclimatization of regenerated plant, growth characteristics did not show significant difference (95%) shading with respect to the different ratio of substrate mixture, and it was determined that would be appropriate, considering plant height and appearance preference of H. truncata. It was established that optimization of culture condition, was responsible for mass propagation in vitro cultures of H. truncata.

하월시아 옥선(Haworthia truncata)의 기내 대량생산을 위하여 캘러스 유도에 적합한 부위와 기내 재분화 조건을 확립하고, 형성된 식물체의 기외 순화조건을 구명하고자 본 연구를 수행하였다. 캘러스를 유도에 적합한 식물 부위를 구명하기 위해 잎, 화뢰, 화경을 이용하여 NAA와 TDZ의 농도를 달리하여 MS배지에 배양한 결과, 잎은 NAA $1{\sim}2mgL^{-1}$ 단용 배지, 화뢰 NAA $1mgL^{-1}$ + TDZ $2mgL^{-1}$혼용처리에서 100% 캘러스 형성율을 보였으며, 화경 NAA $2mgL^{-1}$ + TDZ $2mgL^{-1}$혼용처리에서 75% 캘러스 형성율을 나타냈으며 이 중 가장 많은 배양 절편체 확보가 가능한 잎이 옥선(H. truncata)의 대량 증식에 가장 효율적일 것으로 판단되었다. Shoot 유도 배지로는 NAA $0.1mgL^{-1}$의 단용 처리구에서 다른 처리에 비해서 shoot가 24.2개로 shoot 발생이 가장 많았으며, shoot 증식(multiple shoot)은 NAA $1mgL^{-1}$ + BA $0.1mgL^{-1}$ 혼용 처리구에서 multiple shoot가 66.3개로 가장 많이 형성되었다. 재분화 식물체의 기외 순화조건은 용토에 따라 생육에 큰 차이를 보이지 않았으나 식물체의 고유 엽색 유지, 엽장, 생존율을 고려하여 차광막 95%에서 순화 처리하는 것이 적합할 것으로 판단되었다. 이러한 결과는 최적의 기내 배양 조건 및 재분화 식물체 순화 조건 구명을 통해 번식이 어려운 옥선(H. truncata)의 균일하고 안정적인 대량생산이 가능할 것으로 기대된다.

Keywords

References

  1. Bae DH (2009) Plant regeneration through organogenesis and camtothecin analysis from callus of camptotheca acuminata decaisne. Department of Biology. Gruduate shool chonnam National University
  2. Bae KH, Lim S, Yoon ES, Shin CG, Kim YY, Kim YS (2005) Effect of cytokinin and putrescine on plant regeneration from leaf explant of Rhodiola sachalinesis A. Bor. Korean J. Plant Biotech 32(3):195-199 https://doi.org/10.5010/JPB.2005.32.3.195
  3. Bae KH, Ko MS, Kim NY, Song JM, Song GP (2012) In vitro propagation and multiple shoot induction of of Rhodiola rosea L. by axillary bud culture. J Plant Biotechnol 39:114-120 https://doi.org/10.5010/JPB.2012.39.2.114
  4. Boggetti B, Jasik J, Mantell S (1999) In vitro multiplication of cashew (Anacardium occidentale L.) using shoot node explants of glasshouse-raised plants. Plant Cell Rep 18:456-461 https://doi.org/10.1007/s002990050603
  5. Brainerd KE, Fuchigami LH, Kwiatkowski S, Clark S (1981) Leaf anatomy and water stress of aseptically cultured 'pixy' plum grown under different environments. HortScience 16:173-175
  6. Collins GB, Vian WE, Phillips GC (1978) Use of 4-amino-3,4,6-trichloropicolinic acid as an auxin source in plant tissue cultures. Crop Science 18:286-288 https://doi.org/10.2135/cropsci1978.0011183X001800020023x
  7. Chung JH and Cho SH (2002) Tissue cultures of Platycodon grandiflorus. J. Agr. & Life Sci. 36(4):9-18
  8. Datta SK, Datta K and Potrycus I (1990) Embryogenesis and plant regeneration from microspores of both indica and japonica rice (Oryza sativa). Plant Sci. 67:83-88 https://doi.org/10.1016/0168-9452(90)90053-Q
  9. Devlin RM (1975) Plant growth hormone, In: Plant physiology (3rd), (ed.) D. Van Nortrand Company, New York. pp 411-517
  10. Fuchigami LH, Cheng TY, Soeldner (1981) Abaxial transpiration and water loss in aseptically cultured plum. J.Am,Soc. Hortic Sci. 106(4):519-522
  11. Furmanowa M, Glowniak K, Baranek KS, Zgoka G, Jozefczyk A (1997) Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus x media var. Hatfieldii. Plant Cell Org Tiss Org Cult 49:75-79 https://doi.org/10.1023/A:1005858329430
  12. Grout BWW, Aston MJ (1977) Transplanting cauliflower plants regenerated from meristem culture. I. Walter loss and water transfer related to changes in leaf wax to xylem regeneration Hor Res 17:1-7 https://doi.org/10.1159/000179668
  13. Guadalupe M, Humberto S, Ralph B (1999) In vitro culture as a potential method for the conservation of endangered plants possessing crassulacean acid metabolism. Sci Hortc 81:71-87 https://doi.org/10.1016/S0304-4238(98)00250-7
  14. Hayashi M (1987) Callus characteristics and classification of Haworthia and allied genera. S. Afr J Bot 53(6):411-423 https://doi.org/10.1016/S0254-6299(16)31374-6
  15. Han EU, Son YW, Kim MB, Shin YW, Cho YS, Lee SW (2014) Establishment of tissue culture and acclimation of white ballon flower (Platycodon grandiflorum DC. cv. Jangback) for the raising of in vitro propagated seedlings. J Plant Biotechnol 41:134-139 https://doi.org/10.5010/JPB.2014.41.3.134
  16. Han SK (2000) Plantlet regeneration by tissue cultures of Cyclamen persicum Mill. Major of Agriculture Education Graduate School of Education Chonbuk National University
  17. Hyun TK, Park SH, Li CH, Shin DY, Lee HK, Chul CM, Yu CY (2001) Callus formation and plant regeneration of Dicentra spectabilis L. in vitro culture. J. Agr. Sci. Vol 12:126-132
  18. Kim HJ (2007) In vitro propagation of Bupleurum latissimum Nakai. Department of Horticulture, Graduate shool Chonbuk National University, Jeonju. Korea
  19. Kim SL, Han TJ (2003) Determination times for induction of Adventitious shoots, roots, trichomes, and calli from segments of Arabidopsis thaliana by NAA and BA. Korean J Plant Biotech 30(2):161-165 https://doi.org/10.5010/JPB.2003.30.2.161
  20. Kim YC, Kim SM, Lee SH, Kwon YC, Kim HY (1996) Callus induction and plant regeneration efficiency according to tissue culture conditions in Liriope platyphylla. Korean J Breed 28(2):194-198
  21. Kim YH, Kim HH, Lee GY, Lee JH, Jung JH, Pablo DS, Lee SD (2018) Effect of growth regulators on in vitro mass propagation of Haworthia maughanii. J Plant Biotechnol 45(4):369-374 https://doi.org/10.5010/JPB.2018.45.4.369
  22. Kim YH, Lee GY, Kim HH , Lee JH, Jung JH, Lee SD (2019) Establishment of tissue culture and acclimazation method for in vitro mass propagation of Echeveria laui and Echeveria elegans. J Plant Biotech 46:22-31 https://doi.org/10.5010/JPB.2019.46.1.022
  23. Koeje DS, Grimes HD, Wang YC and Hodges TK (1989) Regeneration of indica rice (Oryza sativa L.) from primary callus derived from immature embryos. J Plant physiol 135:184-189 https://doi.org/10.1016/S0176-1617(89)80175-0
  24. Kwon HK, Yoon KE (2010) Effect of plant growth regulators on plant regeneration from the Sedum rotundifolium D. Lee. J Plant Biotechnol 37:84-88 https://doi.org/10.5010/JPB.2010.37.1.084
  25. Lee HS (2015) A study on characterization of cultivating Haworthia in Korea. Sahmyook National University
  26. Lee SG, Lee SH, Kang HD (2011) In vitro propagation of wild cynanchum wilfordii through axillary bud culture. Jour Korean For Soc 100(2):172-177
  27. Li CH, Lim JD, Kim MJ, Kim NY, Yu CY (2005) Acclimatization and growth characteristics of plantlets of Eleutherococcus senticosus maxim. cultured by bioreactor. Kor J Medicinal Crop Sci 13(4):133-137
  28. Majumdar SK, Sabharwal PS (1968) Induction of vegetative buds on inflorescence of Haworthia in vitro. Amer J Bot 55:705
  29. Majumdar SK (1970) Production of plantlets from the ovary wall of Haworthia turgida var. pallidfifolia. Planta (Berl) 90:212-214 https://doi.org/10.1007/BF00388049
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  31. Mycock DJ, Watt WP, Hannweg KF, Naicker K, Makwarela, Berjak P (1997) Somatic embryogenesis of two indigenous South African Haworthia spp. (H. limifolia and H. koelmaniorum. S. Afr J Bot 63(6):345-350 https://doi.org/10.1016/S0254-6299(15)30784-5
  32. Park CH, Seong NS, Paek KY, Lee CH (1998) Micropropagation through callus culture in Chinese Foxglove (Rehmannia glutinosa) Korean J Plant Tissue Culture 25(3):171-175
  33. Park CH, Yu CY, Kim DW, Cho HK, Park KS, Seo JS, Ahn SD, Chang BH (1994) Plant regeneration of Bupleurum spp. Through somatic tissue culture. Kor J Med Crop Sci 2:60-66
  34. Park DJ, Kim HG, Yang WH, Young SH, Im HJ, Choi MS (2017) Influence of culture medium and plant growth regulators on in vitro propagation of drought tolerant plants. Journal of Agriculture & Life Science 51(6):23-24 https://doi.org/10.14397/jals.2017.51.1.23
  35. Park MS, Choi PS (2015) Plant regeneration from hypocotyls explants of Astragalus sinicus L. J Plant Biotechnol. 42(4):396-400 https://doi.org/10.5010/JPB.2015.42.4.396
  36. Park MW, Ryu SH, Lee YY, Song JM, Kim JH. Ahn YH, Bae KH (2018) Callus induction and in vitro plant regeneration of polygonatum stenophyllum Maxim. J Plant Biotech 45:266-272 https://doi.org/10.5010/JPB.2018.45.3.266
  37. Ryu JH, Doo HS, Kwon TH (1992) Induction of haploid plants by anther culture in sesame(Sesam indicum L.) Effect of growth regulators and difference between genotype on callus induction. Kor J Plant Tissue Culture 19:171-177
  38. Skoog F, Strong FM, Miller CO (1965) Cytokinins. Science 148:532-533 https://doi.org/10.1126/science.148.3669.532-a
  39. Scott TK (1972) Auxin and roots. Annu Rev Physiol Plant Mol Biol 28:235-258 https://doi.org/10.1146/annurev.pp.23.060172.001315
  40. Suzuki S and M. Nakano (2001) Organogenesis and somatic embryogenesis from callus cultures in Muscari armeniacum LEIHTL. ex BAK. in vitro Cell. Dev. Biol. Plant 37:382-387 https://doi.org/10.1007/s11627-001-0067-1
  41. Vieitez AM, Sanchez C, San-Jose C (1989) Prevention of shoot-tip necrosis in shoot culture of chestnut and oak. Sci Hort 41:151-159 https://doi.org/10.1016/0304-4238(89)90059-9
  42. Yasunari Ogihara (1979) Tissue Culture in Haworthia. Effect of three auxins and kinetin on greening and redifferentiation of calluses. Bot Mag Tokyo 92:163-171 https://doi.org/10.1007/BF02497928