DOI QR코드

DOI QR Code

Effects of porosity models on static behavior of size dependent functionally graded beam

  • Hamed, Mostafa A. (Mechanical Engineering Dept., Faculty of Engineering, King Abdulaziz University) ;
  • Sadoun, Ayman M. (Mechanical Engineering Dept., Faculty of Engineering, King Abdulaziz University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Dept., Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2019.02.26
  • 심사 : 2019.03.20
  • 발행 : 2019.07.10

초록

In this study, the mechanical bending behaviors of functionally graded porous nanobeams are investigated. Four types of porosity which are, the classical power porosity function, the symmetric with mid-plane cosine function, bottom surface distribution and top surface distribution are proposed in analysis of nanobeam for the first time. A comparison between four types of porosity are illustrated. The effect of nano-scale is described by the differential nonlocal continuum theory of Eringen by adding the length scale into the constitutive equations as a material parameter comprising information about nanoscopic forces and its interactions. The graded material is designated by a power function through the thickness of nanobeam. The beam is simply-supported and is assumed to be thin, and hence, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Numerical results show effects of porosity type, material graduation, and nanoscale parameters on the static deflection of nanobeam.

키워드

과제정보

연구 과제 주관 기관 : King Abdulaziz University

참고문헌

  1. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  2. Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. http://dx.doi.org/10.12989/scs.2017.24.5.579.
  3. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. http://dx.doi.org/10.12989/scs.2016.20.5.963.
  4. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
  5. Al Rjoub, Y.S. and Hamad, A.G. (2017), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civil Eng., 21(3), 792-806. https://doi.org/10.1007/s12205-016-0149-6.
  6. Atmane, H.A., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", J. Mech. Mater. Design, 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  7. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. http://dx.doi.org/10.12989/was.2018.27.5.311.
  8. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. http://dx.doi.org/10.12989/eas.2018.14.2.103.
  9. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. http://dx.doi.org/10.12989/scs.2015.18.4.1063.
  10. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. http://dx.doi.org/10.12989/sem.2017.62.6.695.
  11. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory', Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  12. Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., 31(2), 194-198. https://doi.org/10.1115/1.3629586
  13. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. andTounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. http://dx.doi.org/10.12989/anr.2018.6.2.147.
  14. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. http://dx.doi.org/10.12989/sss.2017.19.2.115.
  15. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. http://dx.doi.org/10.12989/scs.2016.20.2.227.
  16. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  17. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. http://dx.doi.org/10.12989/scs.2015.18.2.425.
  18. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  19. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  20. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  21. Detournay, E. and Cheng, A.H.D. (1995), "Fundamentals of poroelasticity", Analysis Design Methods, 113-171. https://doi.org/10.1016/B978-0-08-040615-2.50011-3.
  22. Detsi, E., Selles, M.S., Onck, P.R. and De Hosson, J.T.M. (2013), "Nanoporous silver as electrochemical actuator", Scripta Materialia, 69(2), 195-198. https://doi.org/10.1016/j.scriptamat.2013.04.003.
  23. Ebrahimi, F. and Daman, M. (2017), "Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment", Struct. Eng. Mech., 64(1), 121-133. http://dx.doi.org/10.12989/sem.2017.64.1.121.
  24. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016. http://dx.doi.org/10.1155/2016/9561504.
  25. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014.
  26. Eltaher, M., Emam, S. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  27. Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014a), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
  28. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014b), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
  29. Eltaher, M., Khater, M., and Emam, S. (2016a), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
  30. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016b), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano. Res, 4(1), 51-64. http://dx.doi.org/10.12989/anr.2016.4.1.051.
  31. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018a), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
  32. Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
  33. Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018c), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24, 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
  34. Eltaher M.A., Mohamed N., Mohamed S. and Seddek L.F. (2019), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
  35. Eltaher M.A., Almalki T.A., Ahmed K. I.E., and Almitani K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano. Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  36. Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.
  37. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., 25(6), 717-726. http://dx.doi.org/10.12989/scs.2017.25.6.717.
  38. Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0.
  39. Hamza-Cherif, R., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, S. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
  40. Heshmati, M. and Daneshmand, F. (2018), "A study on the vibrational properties of weight-efficient plates made of material with functionally graded porosity", Compos. Struct., 200, 229-238. https://doi.org/10.1016/j.compstruct.2018.05.099.
  41. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. http://dx.doi.org/10.12989/scs.2016.22.2.257.
  42. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., 65(5), 621-631. http://dx.doi.org/10.12989/sem.2018.65.5.621.
  43. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 55, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  44. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. http://dx.doi.org/10.12989/scs.2017.25.3.361.
  45. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Walled Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  46. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. http://dx.doi.org/10.12989/scs.2018.27.2.201.
  47. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. http://dx.doi.org/10.12989/sem.2017.64.4.391.
  48. Kim, H.S., Yang, Y., Koh, J. T., Lee, K.K., Lee, D.J., Lee, K.M. and Park, S.W. (2009), "Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing", J. Biomed. Mater. Res. Part B, 88(2), 427-435. https://doi.org/10.1002/jbm.b.31124.
  49. Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
  50. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  51. Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P. and Eslami, M.R. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation", Compos. Struct., 112, 292-307. https://doi.org/10.1016/j.compstruct.2014.01.041.
  52. Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A. and Taya, M. (2003), "Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators", J. American Ceramic Soc., 86(7), 1094-1098. https://doi.org/10.1111/j.1151-2916.2003.tb03430.x.
  53. Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
  54. Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theoretical Appl. Mech., 47, 421-433.
  55. Magnucka-Blandzi, E. (2010), "Non-linear analysis of dynamic stability of metal foam circular plate", J. Theoretical Appl. Mech., 48(1), 207-217.
  56. Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theoretical Appl. Mech., 42(4), 859-868.
  57. Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B. B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.
  58. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  59. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. http://dx.doi.org/10.12989/sss.2018.21.4.397.
  60. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. http://dx.doi.org/10.12989/sss.2017.20.3.369.
  61. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  62. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  63. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018a), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Europe. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5.
  64. She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018b), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
  65. She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", J. Eng. Science, 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
  66. Shojaeefard, M.H., Googarchin, H.S., Ghadiri, M. and Mahinzare, M. (2017), "Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT", Appl. Math. Model., 50, 633-655. https://doi.org/10.1016/j.apm.2017.06.022.
  67. Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J. and Lee, J. (2018), "Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions", Aerosp. Sci. Technol.. https://doi.org/10.1016/j.ast.2018.06.010.
  68. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  69. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), pp.1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143.
  70. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. http://dx.doi.org/10.12989/sss.2018.21.1.015.
  71. Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. http://dx.doi.org/10.12989/sem.2018.66.3.353.
  72. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. http://dx.doi.org/10.12989/sem.2015.54.4.693.
  73. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. http://dx.doi.org/10.12989/sem.2017.64.2.145.

피인용 문헌

  1. Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads vol.34, pp.1, 2019, https://doi.org/10.12989/scs.2020.34.1.075
  2. Buckling and stability analysis of sandwich beams subjected to varying axial loads vol.34, pp.2, 2019, https://doi.org/10.12989/scs.2020.34.2.241
  3. Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment vol.95, pp.6, 2019, https://doi.org/10.1088/1402-4896/ab793f
  4. Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core vol.36, pp.4, 2019, https://doi.org/10.1007/s00366-020-01023-w
  5. Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method vol.7, pp.5, 2019, https://doi.org/10.1093/jcde/qwaa041
  6. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  7. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
  8. Finite Element Modeling for Static Bending Behaviors of Rotating FGM Porous Beams with Geometrical Imperfections Resting on Elastic Foundation and Subjected to Axial Compression vol.2021, 2019, https://doi.org/10.1155/2021/3835440
  9. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
  10. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2019, https://doi.org/10.12989/scs.2021.38.5.583
  11. Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2019, https://doi.org/10.12989/gae.2021.24.6.545
  12. Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2019, https://doi.org/10.12989/scs.2021.39.1.095
  13. Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2019, https://doi.org/10.12989/sem.2021.79.1.023
  14. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2019, https://doi.org/10.12989/scs.2021.40.2.307
  15. A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers vol.79, pp.3, 2019, https://doi.org/10.12989/sem.2021.79.3.279