References
- AISC-ASD (1989), "Manual of Steel Construction: Allowable Stress Design", American Institute of Steel Construction; Chicago, USA.
- Artar, M. and Daloglu, A.T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503.
- Artar, M. (2016a), "Optimum design of steel space frames under earthquake effect using harmony search", Struct. Eng. Mech., 58(3), 597-612. http://dx.doi.org/10.12989/sem.2016.58.3.597.
- Artar, M. (2016b), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., 22(4), 733-744. http://dx.doi.org/10.12989/scs.2016.22.4.733.
- Artar, M. (2016c), "A comparative study on optimum design of multi-element truss structures", Steel Compos. Struct., 22(3), 521-535. http://dx.doi.org/10.12989/scs.2016.22.3.521.
- Artar, M. (2016d), "Optimum design of space truss tower using teaching-learning based optimization", Dicle University Journal of Engineering. 7(13), 471-480. https://dergipark.org.tr/dumf/issue/29221/312786.
- Artar, M., Catar, R. and Daloglu, A.T. (2017), "Optimum design of steel bridges including corrosion effect using TLBO", Struct. Eng. Mech., 63(5) 607-615. http://dx.doi.org/10.12989/sem.2017.63.5.607.
- Aydogdu, I, Carbas, S. and Akin., A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. http://dx.doi.org/10.12989/scs.2017.24.1.093.
- Aydogdu, I., Efe, P. Yetkin, M. and Akin., A. (2017), "Optimum design of steel space structures using social spider optimization algorithm with spider jump technique", Struct. Eng. Mech., 62(3), 259-272. http://dx.doi.org/10.12989/sem.2017.62.3.259.
- Aydogdu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029.
- Camp, C.V. and Bichon, B.J. (2004), "Design of space trusses using ant colony optimization", J. Struct. Eng. 130 (5), 741-751. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741).
- Carbas S. (2016), "Design optimization of steel frames using an enhanced firefly algorithm", Eng. Optimiz., 48(12), 2007-2025. https://doi.org/10.1080/0305215X.2016.1145217.
- Carbas, S. (2017), "Optimum structural design of spatial steel frames via biogeography-based optimization", Neural Comput. Appl., 28(6), 1525-1539. https://doi.org/10.1007/s00521-015-2167-6.
- Coello, C.A.C. (2002), "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art", Comput. Methods Appl. Mech. Eng., 191, 1245-1287. https://doi.org/10.1016/S0045-7825(01)00323-1.
- Daloglu, A.T, Artar, M., Ozgan, K. and Karakas A.I. (2016), "Optimum design of steel space frames including soil-structure interaction", Struct. Multidiscip. O., 54(1), 117-131. https://doi.org/10.1007/s00158-016-1401-x.
- Degertekin, S.O. (2012) "Optimum design of geometrically nonlinear steel frames using artificial bee colony algorithm", Steel Compos. Struct., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505.
- Degertekin, S.O., Lamberti, L. and Hayalioglu, M.S. (2017), "Heat transfer search algorithm for sizing optimization of truss structures", Lat. Am. J. Solids Stru., 14(3), 373-397. http://dx.doi.org/10.1590/1679-78253297.
- Degertekin, S.O., and Geem, Z.W. (2016), "Metaheuristic optimization in structural engineering", Model Optim. Sci. Tech., 7, 75-93. https://doi.org/10.1007/978-3-319-26245-1_4.
- Dede, T. and Togan, V. (2015), "A teaching learning based optimization for truss structures with frequency constraints", Struct. Eng. Mech., 53(4), 833-845. http://dx.doi.org/10.12989/sem.2015.53.4.833.
- Hadidi, A. and Rafiee, A. (2014) "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. http://dx.doi.org/10.12989/sem.2014.50.3.323.
- Hasancebi, O., and Erbatur, F. (2002), "On efficient use of simulated annealing in complex structural optimization problems", Acta Mech., 157(1-4), 27-50. https://doi.org/10.1007/BF01182153.
- Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009) "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87(5-6), 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002.
- Hasancebi, O., Carbas, S. and Saka, M.P. (2010), "Improving performance of simulated annealing in structural optimization", Struct. Multidiscip. O., 41(2), 189-203. ttps://doi.org/10.1007/s00158-009-0418-9.
- Hasancebi, O. and Carbas, S. (2014) "Bat inspired algorithm for discrete size optimization of steel frames", Adv. Eng. Softw., 67, 173-185. https://doi.org/10.1016/j.advengsoft.2013.10.003.
- Hasancebi O. (2008), "Adaptive evolution strategies in structural optimization: enhancing their computational performance with applications to large-scale structures", Comput. Struct., 86(1-2), 119-132. https://doi.org/10.1016/j.compstruc.2007.05.012.
- Hasancebi, O., Teke, T. and Pekcan, O. (2013), "A bat-inspired algorithm for structural optimization", Comput. Struct., 128, 77-90. https://doi.org/10.1016/j.compstruc.2013.07.006.
- Kaveh, A. (2016), Applications of Metaheuristic Optimization Algorithms in Civil Engineering, Springer, Germany.
- Kelesoglu, O., and Ulker, M. (2005), "Multi-objective fuzzy optimization of space trusses by Ms-Excel", Adv. Eng. Softw., 36(8), 549-553. https://doi.org/10.1016/j.advengsoft.2005.02.001.
- Lamberti, L. and Pappalettere, C. (2011), "Metaheuristic design optimization of skeletal structures: A review", Comput. Technol. Rev., 4(1), 1-32. https://doi.org/10.4203/ctr.4.1
- Li, L.J., Huang, Z.B., and Liu, F.A. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7-8), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004.
- MATLAB (2009), "The Language of Technical Computing", The Mathworks, Natick, MA, USA.
- Rao, R.V. and Patel, V. (2012), "An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems", J. Industrial Eng. Comput., 3(4), 535-560. http://dx.doi.org/10.5267/j.ijiec.2012.03.007.
- Rao, R.V. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", J. Industrial Eng. Comput., 7, 19-34. http://dx.doi.org/10.5267/j.ijiec.2015.8.004.
- Rao, R.V., More, K.C., Taler, J. and Oclon., P. (2016), "Dimensional optimization of a micro-channel heat sink using Jaya algorithm", Appl. Therm. Eng., 103, 572-582. https://doi.org/10.1016/j.applthermaleng.2016.04.135.
- Rao, R.V., Rai, D.P. and Balic, J. (2016), "Surface grinding process optimization using Jaya algorithm", Adv. Intelligent Syst. Comput., 411, 487-495. https://doi.org/10.1007/978-81-322-2731-1_46.
- Rao, R.V., and More, K.C. (2017), "Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm", Energy Conversion Management, 140, 24-35. https://doi.org/10.1016/j.enconman.2017.02.068.
- Rao R.V. and Waghmare, G.G. (2017), "A new optimization algorithm for solving complex constrained design optimization problems", Eng. Optimiz., 49(1), 60-83. https://doi.org/10.1080/0305215X.2016.1164855.
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233).
- Saka, M.P. (2007), "Optimum design of steel frames using stochastic search techniques based on natural phenomena: A review", Civil Engineering Computations: Tools and Techniques, Saxe-Coburg Publications, Stirlingshire, United Kingdom, 105-147.
- Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. Constr. Steel Res., 65(1), 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005.
- Saka, M.P. and Dogan, E. (2012), "Recent developments in metaheuristic algorithms: A review", Comput. Technol. Rev., 5(4), 31-78. https://doi.org/10.4203/ctr.5.2
- Saka, M.P. and Geem, Z.W. (2013), "Mathematical and metaheuristic applications in design optimization of steel frame structures: An extensive review", Math. Problems Eng., 2013,1-33. http://dx.doi.org/10.1155/2013/271031.
- Saka, M.P. (2014), "Shape and topology optimization design of skeletal structures using metaheuristic algorithms: A review", Comput. Technol. Rev., 9, 31-68. https://doi.org/10.4203/ctr.9.2
- SAP2000 (2008), "Integrated Finite Elements Analysis and Design of Structures", Computers and Structures, Inc.; Berkeley, CA, USA.
- Togan, V. and Daloglu, A.T. (2008), "An improved genetic algorithm with initial population strategy and self-adaptive member grouping", Comput. Struct., 86(11-12), 1204-1218. https://doi.org/10.1016/j.compstruc.2007.11.006.
- Turkish Earthquake codes (2007), "Specification for structures to be built in disaster areas", Turkey.
Cited by
- Solving structural optimization problems with discrete variables using interactive fuzzy search algorithm vol.79, pp.2, 2019, https://doi.org/10.12989/sem.2021.79.2.247
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795
- Optimal truss sizing by modified Rao algorithm combined with feasible boundary search method vol.191, 2019, https://doi.org/10.1016/j.eswa.2021.116337