DOI QR코드

DOI QR Code

High energy swift heavy ion irradiation and annealing effects on DC electrical characteristics of 200 GHz SiGe HBTs

  • Hegde, Vinayakprasanna N. (Department of Studies in Physics, University of Mysore) ;
  • Praveen, K.C. (Laboratory for Electro-Optics Systems (LEOS), ISRO) ;
  • Pradeep, T.M. (Department of Studies in Physics, University of Mysore) ;
  • Pushpa, N. (Department of PG Studies in Physics, JSS College) ;
  • Cressler, John D. (School of Electrical and Computer Engineering, Georgia Institute of Technology) ;
  • Tripathi, Ambuj (Inter-University Accelerator Centre (IUAC)) ;
  • Asokan, K. (Inter-University Accelerator Centre (IUAC)) ;
  • Prakash, A.P. Gnana (Department of Studies in Physics, University of Mysore)
  • 투고 : 2018.06.18
  • 심사 : 2019.03.22
  • 발행 : 2019.06.25

초록

The total ionizing dose (TID) and non ionizing energy loss (NIEL) effects of 100 MeV phosphorous ($P^{7+}$) and 80 MeV nitrogen ($N^{6+}$) ions on 200 GHz silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were examined in the total dose range from 1 to 100 Mrad(Si). The in-situ I-V characteristics like Gummel characteristics, excess base current (${\Delta}I_B$), net oxide trapped charge ($N_{OX}$), current gain ($h_{FE}$), avalanche multiplication (M-1), neutral base recombination (NBR) and output characteristics ($I_C-V_{CE}$) were analysed before and after irradiation. The significant degradation in device parameters was observed after $100MeV\;P^{7+}$ and $80MeV\;N^{6+}$ ion irradiation. The $100MeV\;P^{7+}$ ions create more damage in the SiGe HBT structure and in turn degrade the electrical characteristics of SiGe HBTs more when compared to $80MeV\;N^{6+}$. The SiGe HBTs irradiated up to 100 Mrad of total dose were annealed from $50^{\circ}C$ to $400^{\circ}C$ in different steps for 30 min duration in order to study the recovery of electrical characteristics. The recovery factors (RFs) are employed to analyse the contribution of room temperature and isochronal annealing in total recovery.

키워드

참고문헌

  1. J.D. Cressler, SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications, IEEE Trans. Microw. Theory Tech. 46 (1998) 572-589. https://doi.org/10.1109/22.668665
  2. J.D. Cressler, On the potential of SiGe HBTs for extreme environment electronics, Proc. IEEE 93 (2005) 1559-1582. https://doi.org/10.1109/JPROC.2005.852225
  3. J.D. Cressler, Silicon-germanium as an enabling technology for extreme environment electronics, IEEE Trans. Device Mater. Reliab. 10 (2010) 437-448. https://doi.org/10.1109/TDMR.2010.2050691
  4. H.N. Baek, G.M. Sun, J. suck Kim, S.M. Hoang, M.E. Jin, S.H. Ahn, Improvement of switching speed of a 600-V nonpunch-through insulated gate bipolar transistor using fast neutron irradiation, Nuclear Engineering and Technology 49 (2017) 209-215. https://doi.org/10.1016/j.net.2016.08.016
  5. A. Bobby, N. Shiwakoti, P.M. Sarun, S. Verma, K. Asokan, B.K. Antony, Swift heavy ion induced capacitance and dielectric properties of Ni/n-GaAs Schottky diode, Curr. Appl. Phys. 15 (2015) 1500-1505. https://doi.org/10.1016/j.cap.2015.08.020
  6. G. Vizkelethy, D.K. Brice, B.L. Doyle, Heavy ion beam induced current/charge (IBIC) through insulating oxides, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 249 (2006) 204-208. https://doi.org/10.1016/j.nimb.2006.03.115
  7. B.M. Haugerud, M.M. Pratapgarhwala, J.P. Comeau, A.K. Sutton, A.P. Gnana Prakash, J.D. Cressler, P.W. Marshall, C.J. Marshall, R.L. Ladbury, M. El-Diwany, C. Mitchell, L. Rockett, T. Bach, R. Lawrence, N. Haddad, Proton and gamma radiation effects in a new first-generation SiGe HBT technology, Solid State Electron. 50 (2006) 181-190. https://doi.org/10.1016/j.sse.2005.11.007
  8. Y.P. Rao, K.C. Praveen, Y.R. Rani, A. Tripathi, A.P. Gnana Prakash, 75 MeV boron ion irradiation studies on Si PIN photodiodes, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 316 (2013) 205-209. https://doi.org/10.1016/j.nimb.2013.09.011
  9. A. Anjum, N.H. Vinayakprasanna, T.M. Pradeep, N. Pushpa, J. Krishna, A.P. Gnana Prakash, A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 379 (2016) 265-271. https://doi.org/10.1016/j.nimb.2016.04.023
  10. G.P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, R.J. Walters, Damage correlations in semiconductors exposed to gamma, electron and proton radiations, IEEE Trans. Nucl. Sci. 40 (1993) 1372-1379. https://doi.org/10.1109/23.273529
  11. H. Barnaby, S. Smith, R. Schrimpf, D. Fleetwood, R. Pease, Analytical model for proton radiation effects in bipolar devices, IEEE Trans. Nucl. Sci. 49 (2002) 2643-2649. https://doi.org/10.1109/TNS.2002.805410
  12. N.H. Vinayakprasanna, K.C. Praveen, N. Pushpa, A. Tripathi, J.D. Cressler, A.P. Gnana Prakash, 80 MeV carbon ion irradiation effects on advanced 200 GHz silicon-germanium heterojunction bipolar transitors, Advanced Materials Letters 6 (2015) 120-126. https://doi.org/10.5185/amlett.2015.5708
  13. K.C. Praveen, N. Pushpa, P.S. Naik, J.D. Cressler, A. Tripathi, A.P. Gnana Prakash, Application of a Pelletron accelerator to study total dose radiation effects on 50GHz SiGe HBTs, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 273 (2012) 43-46. https://doi.org/10.1016/j.nimb.2011.07.034
  14. C. Maiti, G.A. Armstrong, Applications of Silicon-Germanium Heterostructure Devices, CRC Press, 2001.
  15. Y. Sun, J. Fu, J. Xu, Y. Wang, W. Zhou, W. Zhang, J. Cui, G. Li, Z. Liu, Degradation differences in the forward and reverse current gain of 25MeV Si ion irradiated SiGe HBT, Phys. B Condens. Matter 449 (2014) 186-192. https://doi.org/10.1016/j.physb.2014.05.033
  16. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM-The stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 1818-1823, 2010. https://doi.org/10.1016/j.nimb.2010.02.091
  17. A.K. Sutton, Hardness Assurance Testing and Radiation Hardening by Design Techniques for Silicon-Germanium Heterojunction Bipolar Transistors and Digital Logic Circuits, 2009.
  18. Y. Sun, J. Fu, J. Xu, Y. Wang, W. Zhou, W. Zhang, J. Cui, G. Li, Z. Liu, Degradation differences in the forward and reverse current gain of 25MeV Si ion irradiated SiGe HBT, Phys. B Condens. Matter 449 (2014) 186-192. https://doi.org/10.1016/j.physb.2014.05.033
  19. H. Kamimura, S. Yoshioka, M. Akiyama, M. Nakamura, T. Tamura, S. Kuboyama, Development of MOS transistors for radiation-hardened large scale integrated circuits and analysis of radiation-induced degradation, J. Nucl. Sci. Technol. 31 (2014) 24-33. https://doi.org/10.1080/18811248.1994.9735112
  20. J.D. Cressler, G. Niu, Silicon-germanium Heterojunction Bipolar Transistors, Artech house, 2002.
  21. N. Saks, M.Simons,D. Fleetwood, J.Yount, P. Lenahan, R. Klein, Radiation effects in oxynitrides grown in N/sub 2/O, IEEE Trans. Nucl. Sci. 41 (1994) 1854-1863. https://doi.org/10.1109/23.340517
  22. S. Kosier, R. Shrimpf, R. Nowlin, D. Fleetwood, M. DeLaus, R. Pease, W. Combs, A. Wei, F. Chai, Charge separation for bipolar transistors, IEEE Trans. Nucl. Sci. 40 (1993) 1276-1285. https://doi.org/10.1109/23.273541
  23. A. Shatalov, Radiation Effects in III-V Semiconductors and Heterojunction Bipolar Transistors, 2000.
  24. G.C. Messenger, J.P. Spratt, The effects of neutron irradiation on germanium and silicon, Proceedings of the IRE 46 (1958) 1038-1044. https://doi.org/10.1109/JRPROC.1958.286841
  25. M.A. Xapsos, G.P. Summers, C.C. Blatchley, C.W. Colerico, E.A. Burke, S.R. Messenger, P. Shapiro, Co/sup 60/gamma ray and electron displacement damage studies of semiconductors, IEEE Trans. Nucl. Sci. 41 (1994) 1945-1949. https://doi.org/10.1109/23.340528