DOI QR코드

DOI QR Code

Effects of Y and Ti addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel

  • Qiu, Guoxing (State Key Laboratory of Rolling and Automation, Northeastern University) ;
  • Zhan, Dongping (School of Metallurgy, Northeastern University) ;
  • Li, Changsheng (State Key Laboratory of Rolling and Automation, Northeastern University) ;
  • Qi, Min (State Key Laboratory of Rolling and Automation, Northeastern University) ;
  • Jiang, Zhouhua (School of Metallurgy, Northeastern University) ;
  • Zhang, Huishu (School of Metallurgy Engineering, Liaoning Institute of Science and Technology)
  • Received : 2018.11.08
  • Accepted : 2019.03.04
  • Published : 2019.06.25

Abstract

The effects of Y and Ti on the microstructure stability and tensile properties of the reduced activation ferritic/martensitic steel have been investigated. The addition of Y and Ti affected the prior austenite grain size due to the pinning of the inclusions. Ti addition of 0.008 wt% to the steel was intended to promote the precipitation of nano-sized carbides with a high resistance to coarsening. 8Ti14Y exhibited a higher yield strength and a lower DBTT than the other alloys due to the fine grain size and additional precipitation hardening by (Ti, Ta)-rich MX. After thermal exposure at $550^{\circ}C$ for 1500 h, yield strength was dropped significantly in exposed 0Ti13Y. On the contrary, a lower reduction of YS was observed in 8Ti14Y. The $M_{23}C_6$ in 0Ti13Y and 8Ti14Y and MX in 25Ti14Y and 39Ti15Y coarsened seriously during ageing, which could be responsible for the reduction of the tensile properties of alloys.

Keywords

References

  1. H. Tanigawa, K. Shiba, A. Moslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater. 417 (1-3) (2011) 9-15. https://doi.org/10.1016/j.jnucmat.2011.05.023
  2. S.M. Dong, Y. Katoh, A. Kohyama, S.T. Schwab, L.L. Snead, Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process, Ceram. Int. 28 (8) (2002) 899-905. https://doi.org/10.1016/S0272-8842(02)00071-8
  3. M.G. Park, Ch H. Lee, J. Moon, J.Y. Park, T.H. Lee, N. Kang, H. Ch Kim, Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels, J. Nucl. Mater. 485 (2017) 15-22. https://doi.org/10.1016/j.jnucmat.2016.12.018
  4. R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.A.F. Tavassoli, C. Cayron, A.M. Lancha, P. Fernandez, N. Baluc, R. SchV aublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.V.D. Schaaf, E. Lucon, W. Dietz, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Eng. Des. 75-79 (2005) 989-996. https://doi.org/10.1016/j.fusengdes.2005.06.186
  5. H. Sakasegawa, H. Tanigawa, Mechanical properties of F82H plates with different thicknesses, Fusion Eng. Des. 109-111 (2016) 1724-1727. https://doi.org/10.1016/j.fusengdes.2015.10.017
  6. G. Mazzone, J. Aktaa, C. Bachmann, D. DeMeis, P. Frosi, E. Gaganidze, G. DiGironimo, G. Mariano, D. Marzullo, M.T. Porfiri, M. Rieth, R. Villari, J.H. You, Choice of a low operating temperature for the DEMO EUROFER97 divertor cassette, Fusion Eng. Des. 124 (2017) 655-658. https://doi.org/10.1016/j.fusengdes.2017.02.013
  7. R.L. Klueh, M.A. Sokolov, Mechanical properties of irradiated 9Cr-2WVTa steel with and without nickel, J. Nucl. Mater. 367 (6) (2007) 102-106.
  8. Sh J. Liu, Q.Y. Huang Q, Ch J. Li, B. Huang, Influence of non-metal inclusions on mechanical properties of CLAM steel, Fusion Eng. Des. 84 (7) (2009) 1214-1218. https://doi.org/10.1016/j.fusengdes.2008.12.037
  9. H.M. Jing, X.Q. Wu, Y.Q. Liu, M.Q. Lu, K. Yang, Zh M. Yao, W. Ke, Antibacterial property of Ce-bearing stainless steels, J. Mater. Sci. ,42 (13) (2007) 5118-5122. https://doi.org/10.1007/s10853-006-0603-9
  10. F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Effects of rare earth metals on steel microstructures, Materials 9 (6) (2017) 1-19.
  11. Z. Adabavazeh, W.S. Hwang, A.R.A. Dezfoli, Pinning effect of cerium inclusions during austenite grains growth in SS400 steel at $1300^{\circ}C$: a combined phase field and experimental study, Crystals 7 (10) (2017) 308. https://doi.org/10.3390/cryst7100308
  12. M.X. Guo, H. Suito, Pinning of austenite grain boundary of Fe-0.09 to 0.53 mass% C-0.02 mass%P alloys by primary inclusions of $Ce_2O_3$ and CeS, Trans. Iron Steel Inst. Jpn. 39 (12) (2007) 1289-1296.
  13. Y.F. Li, Q.Y. Huang, Y.C. Wu, Y.N. Zheng, Y. Zuo, Sh Y. Zhu, Effects of addition of yttrium on properties and microstructure for China Low Activation Martensitic (CLAM) steel, Fusion Eng. Des. 82 (15) (2007) 2683-2688. https://doi.org/10.1016/j.fusengdes.2007.07.048
  14. Z. Shi, F. Han, The microstructure and mechanical properties of micro-scale $Y_2O_3$ strengthened 9Cr steel fabricated by vacuum casting, Mater. Des. (66) (2015) 304-308.
  15. V. Thomas Paul, S. Saroja, M. Vijayalakshmi, Microstructural stability of modified 9Cre1Mo steel during long term exposures at elevated temperatures, J. Nucl. Mater. 378 (2008) 273-281. https://doi.org/10.1016/j.jnucmat.2008.06.033
  16. C.H. Lee, J.Y.P. ark, W.K. Seol, W.K. Seol, J. Moon, T.H. Lee, N.H. Kang, H.C. Kim, Microstructure and tensile and Charpy impact properties of reduced activation ferritic-martensitic steel with Ti, Fusion Eng. Des. 124 (2017) 953-957. https://doi.org/10.1016/j.fusengdes.2017.05.085
  17. H.K. Kim, J.W. Lee, J. Moon, Ch H. Lee, H.U. Hong, Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors, J. Nucl. Mater. 500 (2018) 327-336. https://doi.org/10.1016/j.jnucmat.2018.01.008
  18. Q. Lin, B.W. Chen, L. Tang, L. Sh Li, X.Y. Zhu, H.B. Wang, Effects of rare earth on behavior of precipitation and properties in microalloyed steels, J. Rare Earths 21 (2) (2003) 167-171.
  19. G.M. Zhang, Zh J. Zhou, M. Wang, Sh F. Li, L. Zou, L.W. Zhang, Tensile and Charpy impact properties of an ODS ferritic/martensitic steel 9Cr-1.8W-0.5Ti-0.35$Y_2O_3$, Fusion Eng. Des. 89 (4) (2014) 280-283. https://doi.org/10.1016/j.fusengdes.2014.01.067
  20. A. Karasev, H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni- M, (M = Si, Ti, Al, Zr, and Ce) alloy, Metall. Mater. Trans. B 30 (2) (1999) 259-270. https://doi.org/10.1007/s11663-999-0055-0
  21. H. T, X. Xi, P.,H. Chen, LI, X. Z, B. Yuan, F. Xu, J. Liu, Effects of inclusions in Zr-doped steels on low temperature toughness, Iron Steel 39 (12) (2004) 60-63. https://doi.org/10.3321/j.issn:0449-749X.2004.12.015
  22. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater. 204 (6) (1993) 1843-1849.
  23. Y.C. Lei, X.K. Guo, H.X. Chang, T.Q. Li, Q. Zhu, G. Chen, L.R. Xiao, Cavitation erosion behavior of CLAM steel weld joint in liquid lead-bismuth eutectic alloy, J. Iron Steel Res. Int. 24 (9) (2017) 935-942. https://doi.org/10.1016/S1006-706X(17)30136-X
  24. K. Sakata, H. Suito, Grain-growth-inhibiting effects of primary inclusion particles of $ZrO_2$, and MgO in Fe-10 mass pct Ni alloy, Metall. Mater. Trans. 31 (4) (2000) 1213-1223. https://doi.org/10.1007/s11661-000-0117-z
  25. T. Gladman, F.B. Pickring, Grain coarsening of austenite, J Iron Steel Inst 205 (6) (1967) 653-655.
  26. J. Zrnik, V. Vrchovinsky, Heat treatment structure modification of wrought nickel-based superalloy and its creep resistance, J. Phys. IV 03 (C7) (1993) 283-288.
  27. O. Anderoglu, T. Sang, B.M. Toloczko, S.A. Maloy, Mechanical performance of ferritic martensitic steels for high Dose;Applications in advanced nuclear reactors, Metall. Mater. Trans. 44 (1) (2013) 70-83. https://doi.org/10.1007/s11661-012-1565-y
  28. M.E. Alam, S. Pal, S.A. Maloy, G.R. Odette, On delamination toughening of a 14YWT nanostructured ferritic alloy, Acta Mater. 136 (2017) 61-73. https://doi.org/10.1016/j.actamat.2017.06.041
  29. M.E. Alam, S. Pal, K. Fields, S.A. Maloy, D.T. Hoelzer, G.R. Odette, Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy, Mater. Sci. Eng., A 675 (2016) 437-448. https://doi.org/10.1016/j.msea.2016.08.051
  30. S. Pal, M.E. Alam, S.A. Maloy, D.T. Hoelzer, G.R. Odette, Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy, Acta Mater. 152 (2018) 338-357. https://doi.org/10.1016/j.actamat.2018.03.045
  31. N. Ch Wang, F. Jiang, X.P. Xu, X. Zh Lu, Effects of crystal orientation on the crack propagation of sapphire by sequential indentation testing, Crystals 8 (1) (2017) 3-16. https://doi.org/10.3390/cryst8010003
  32. A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel, Mater. Char. 59 (2) (2008) 134-139. https://doi.org/10.1016/j.matchar.2006.11.028
  33. K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces, Wear 254 (3) (2003) 278-291. https://doi.org/10.1016/S0043-1648(02)00297-1
  34. W. Wang, Sh J. Liu, G. Xu, B.R. Zhang, Q.Y. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at $550^{\circ}C$, Nucl. Eng. Technol. 48 (2) (2016) 518-524. https://doi.org/10.1016/j.net.2015.11.004

Cited by

  1. Simulation of the Hot Deformation and Fracture Behavior of Reduced Activation Ferritic/Martensitic 13CrMoNbV Steel vol.10, pp.2, 2020, https://doi.org/10.3390/app10020530
  2. Effects of Yttrium on the Microstructure and Properties of 20MnSi Steel vol.92, pp.11, 2019, https://doi.org/10.1002/srin.202100198
  3. Effect of Ti addition on thermal stability and phase evolution of super-invar based yttria added ODS alloys developed by mechanical alloying and spark plasma sintering vol.899, 2019, https://doi.org/10.1016/j.jallcom.2021.163336