References
- H. Tanigawa, K. Shiba, A. Moslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater. 417 (1-3) (2011) 9-15. https://doi.org/10.1016/j.jnucmat.2011.05.023
- S.M. Dong, Y. Katoh, A. Kohyama, S.T. Schwab, L.L. Snead, Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process, Ceram. Int. 28 (8) (2002) 899-905. https://doi.org/10.1016/S0272-8842(02)00071-8
- M.G. Park, Ch H. Lee, J. Moon, J.Y. Park, T.H. Lee, N. Kang, H. Ch Kim, Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels, J. Nucl. Mater. 485 (2017) 15-22. https://doi.org/10.1016/j.jnucmat.2016.12.018
- R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.A.F. Tavassoli, C. Cayron, A.M. Lancha, P. Fernandez, N. Baluc, R. SchV aublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.V.D. Schaaf, E. Lucon, W. Dietz, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Eng. Des. 75-79 (2005) 989-996. https://doi.org/10.1016/j.fusengdes.2005.06.186
- H. Sakasegawa, H. Tanigawa, Mechanical properties of F82H plates with different thicknesses, Fusion Eng. Des. 109-111 (2016) 1724-1727. https://doi.org/10.1016/j.fusengdes.2015.10.017
- G. Mazzone, J. Aktaa, C. Bachmann, D. DeMeis, P. Frosi, E. Gaganidze, G. DiGironimo, G. Mariano, D. Marzullo, M.T. Porfiri, M. Rieth, R. Villari, J.H. You, Choice of a low operating temperature for the DEMO EUROFER97 divertor cassette, Fusion Eng. Des. 124 (2017) 655-658. https://doi.org/10.1016/j.fusengdes.2017.02.013
- R.L. Klueh, M.A. Sokolov, Mechanical properties of irradiated 9Cr-2WVTa steel with and without nickel, J. Nucl. Mater. 367 (6) (2007) 102-106.
- Sh J. Liu, Q.Y. Huang Q, Ch J. Li, B. Huang, Influence of non-metal inclusions on mechanical properties of CLAM steel, Fusion Eng. Des. 84 (7) (2009) 1214-1218. https://doi.org/10.1016/j.fusengdes.2008.12.037
- H.M. Jing, X.Q. Wu, Y.Q. Liu, M.Q. Lu, K. Yang, Zh M. Yao, W. Ke, Antibacterial property of Ce-bearing stainless steels, J. Mater. Sci. ,42 (13) (2007) 5118-5122. https://doi.org/10.1007/s10853-006-0603-9
- F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Effects of rare earth metals on steel microstructures, Materials 9 (6) (2017) 1-19.
-
Z. Adabavazeh, W.S. Hwang, A.R.A. Dezfoli, Pinning effect of cerium inclusions during austenite grains growth in SS400 steel at
$1300^{\circ}C$ : a combined phase field and experimental study, Crystals 7 (10) (2017) 308. https://doi.org/10.3390/cryst7100308 -
M.X. Guo, H. Suito, Pinning of austenite grain boundary of Fe-0.09 to 0.53 mass% C-0.02 mass%P alloys by primary inclusions of
$Ce_2O_3$ and CeS, Trans. Iron Steel Inst. Jpn. 39 (12) (2007) 1289-1296. - Y.F. Li, Q.Y. Huang, Y.C. Wu, Y.N. Zheng, Y. Zuo, Sh Y. Zhu, Effects of addition of yttrium on properties and microstructure for China Low Activation Martensitic (CLAM) steel, Fusion Eng. Des. 82 (15) (2007) 2683-2688. https://doi.org/10.1016/j.fusengdes.2007.07.048
-
Z. Shi, F. Han, The microstructure and mechanical properties of micro-scale
$Y_2O_3$ strengthened 9Cr steel fabricated by vacuum casting, Mater. Des. (66) (2015) 304-308. - V. Thomas Paul, S. Saroja, M. Vijayalakshmi, Microstructural stability of modified 9Cre1Mo steel during long term exposures at elevated temperatures, J. Nucl. Mater. 378 (2008) 273-281. https://doi.org/10.1016/j.jnucmat.2008.06.033
- C.H. Lee, J.Y.P. ark, W.K. Seol, W.K. Seol, J. Moon, T.H. Lee, N.H. Kang, H.C. Kim, Microstructure and tensile and Charpy impact properties of reduced activation ferritic-martensitic steel with Ti, Fusion Eng. Des. 124 (2017) 953-957. https://doi.org/10.1016/j.fusengdes.2017.05.085
- H.K. Kim, J.W. Lee, J. Moon, Ch H. Lee, H.U. Hong, Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors, J. Nucl. Mater. 500 (2018) 327-336. https://doi.org/10.1016/j.jnucmat.2018.01.008
- Q. Lin, B.W. Chen, L. Tang, L. Sh Li, X.Y. Zhu, H.B. Wang, Effects of rare earth on behavior of precipitation and properties in microalloyed steels, J. Rare Earths 21 (2) (2003) 167-171.
-
G.M. Zhang, Zh J. Zhou, M. Wang, Sh F. Li, L. Zou, L.W. Zhang, Tensile and Charpy impact properties of an ODS ferritic/martensitic steel 9Cr-1.8W-0.5Ti-0.35
$Y_2O_3$ , Fusion Eng. Des. 89 (4) (2014) 280-283. https://doi.org/10.1016/j.fusengdes.2014.01.067 - A. Karasev, H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni- M, (M = Si, Ti, Al, Zr, and Ce) alloy, Metall. Mater. Trans. B 30 (2) (1999) 259-270. https://doi.org/10.1007/s11663-999-0055-0
- H. T, X. Xi, P.,H. Chen, LI, X. Z, B. Yuan, F. Xu, J. Liu, Effects of inclusions in Zr-doped steels on low temperature toughness, Iron Steel 39 (12) (2004) 60-63. https://doi.org/10.3321/j.issn:0449-749X.2004.12.015
- S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater. 204 (6) (1993) 1843-1849.
- Y.C. Lei, X.K. Guo, H.X. Chang, T.Q. Li, Q. Zhu, G. Chen, L.R. Xiao, Cavitation erosion behavior of CLAM steel weld joint in liquid lead-bismuth eutectic alloy, J. Iron Steel Res. Int. 24 (9) (2017) 935-942. https://doi.org/10.1016/S1006-706X(17)30136-X
-
K. Sakata, H. Suito, Grain-growth-inhibiting effects of primary inclusion particles of
$ZrO_2$ , and MgO in Fe-10 mass pct Ni alloy, Metall. Mater. Trans. 31 (4) (2000) 1213-1223. https://doi.org/10.1007/s11661-000-0117-z - T. Gladman, F.B. Pickring, Grain coarsening of austenite, J Iron Steel Inst 205 (6) (1967) 653-655.
- J. Zrnik, V. Vrchovinsky, Heat treatment structure modification of wrought nickel-based superalloy and its creep resistance, J. Phys. IV 03 (C7) (1993) 283-288.
- O. Anderoglu, T. Sang, B.M. Toloczko, S.A. Maloy, Mechanical performance of ferritic martensitic steels for high Dose;Applications in advanced nuclear reactors, Metall. Mater. Trans. 44 (1) (2013) 70-83. https://doi.org/10.1007/s11661-012-1565-y
- M.E. Alam, S. Pal, S.A. Maloy, G.R. Odette, On delamination toughening of a 14YWT nanostructured ferritic alloy, Acta Mater. 136 (2017) 61-73. https://doi.org/10.1016/j.actamat.2017.06.041
- M.E. Alam, S. Pal, K. Fields, S.A. Maloy, D.T. Hoelzer, G.R. Odette, Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy, Mater. Sci. Eng., A 675 (2016) 437-448. https://doi.org/10.1016/j.msea.2016.08.051
- S. Pal, M.E. Alam, S.A. Maloy, D.T. Hoelzer, G.R. Odette, Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy, Acta Mater. 152 (2018) 338-357. https://doi.org/10.1016/j.actamat.2018.03.045
- N. Ch Wang, F. Jiang, X.P. Xu, X. Zh Lu, Effects of crystal orientation on the crack propagation of sapphire by sequential indentation testing, Crystals 8 (1) (2017) 3-16. https://doi.org/10.3390/cryst8010003
- A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel, Mater. Char. 59 (2) (2008) 134-139. https://doi.org/10.1016/j.matchar.2006.11.028
- K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces, Wear 254 (3) (2003) 278-291. https://doi.org/10.1016/S0043-1648(02)00297-1
-
W. Wang, Sh J. Liu, G. Xu, B.R. Zhang, Q.Y. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at
$550^{\circ}C$ , Nucl. Eng. Technol. 48 (2) (2016) 518-524. https://doi.org/10.1016/j.net.2015.11.004
Cited by
- Simulation of the Hot Deformation and Fracture Behavior of Reduced Activation Ferritic/Martensitic 13CrMoNbV Steel vol.10, pp.2, 2020, https://doi.org/10.3390/app10020530
- Effects of Yttrium on the Microstructure and Properties of 20MnSi Steel vol.92, pp.11, 2019, https://doi.org/10.1002/srin.202100198
- Effect of Ti addition on thermal stability and phase evolution of super-invar based yttria added ODS alloys developed by mechanical alloying and spark plasma sintering vol.899, 2019, https://doi.org/10.1016/j.jallcom.2021.163336