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Abstract 
 

In a transitive signature scheme, a signer wants to authenticate edges in a dynamically growing 
and transitively closed graph. Using transitive signature schemes it is possible to authenticate 
an edge ( , )i k , if the signer has already authenticated two edges ( , )i j  and ( , )j k . That is, it 
is possible to make a signature on ( , )i k  using two signatures on ( , )i j  and ( , )j k . We 
propose the first transitive signature schemes for undirected graphs from lattices. Our first 
scheme is provably secure in the random oracle model and our second scheme is provably 
secure in the standard model. 
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1. Introduction 

In 2002, Silvio Micali and Ronald L. Rivest introduced the concept of transitive signatures 
[1]. In a transitive signature scheme, a signer wants to authenticate edges in a dynamically 
growing and transitively closed graph. The signer with the knowledge of a secret key can 
generate two signatures ,i jσ  on ( , )i j  and ,j kσ  on an edge ( , )j k , then anyone without the 

knowledge of the secret key can derive a signature ,i kσ  on ( , )i k  from ,i jσ  and ,j kσ . This 
property of transitive signatures could be useful in applications such as a military 
chain-of-command (for directed graphs) and administrative domains (for undirected graphs). 

Constructing a transitive signature scheme for directed graphs still remains an open problem. 
In 2003, Susan Rae Hohenberger even showed that constructing a transitive signature scheme 
for directed graphs may be very hard [2]. Actually, there exist only transitive signature 
schemes for directed trees (not for directed graphs) [3][4][5][6][7]. In this paper, we only take 
an interest in constructing a transitive signature scheme for undirected graphs. 

In an undirected graph, we assume that there are k  nodes. Then we observe that there may 
exist 2(k )O  edges. With a standard signature scheme, naturally, a signer has to generate 

2(k )O  signatures. With a transitive signature scheme, however, a signer only needs to 
generate (k)O  signatures [1]. Therefore, the transitive signature scheme can be efficient and 
useful in the environments. 

1.1 Related Works 

1.1.1 Transitive Signatures 
In 2002, Silvio Micali and Ronald L. Rivest proposed the first transitive signature scheme for 
undirected graphs [1]. In 2004, Siamak Fayyaz Shahandashti et al. proposed a transitive 
signature scheme for undirected graphs [8]. Their scheme is based on bilinear maps. Since 
then, Mihir Bellare and Gregory Neven proposed transitive signature schemes for undirected 
graphs [9][10]. The securities of their schemes are based on the hardness of RSA assumption, 
factoring, DLP, GDH (Gap Diffie-Hellman) assumption, respectively. Mihir Bellare and 
Gregory Neven also constructed a simple generic transformation from a stateful transitive 
signature scheme to a stateless transitive signature scheme with a pseudorandom function [10]. 
The signing algorithm in the transformed stateless transitive signature scheme is deterministic 
because the pseudorandom function is used. 

1.1.2 Lattice-based Cryptosystems 
To date, there exist many transitive signature schemes for undirected graphs, but there exists 
no transitive signature scheme for undirected graphs from lattices. Lattice-based 
cryptosystems have some advantages compared to other cryptosystems based on the hardness 
of factoring, DLP, and so on. First, lattice-based cryptosystems are based on the worst-case 
hardness assumptions, but other cryptosystems are based on the average-case hardness 
assumptions. Next, lattice-based cryptosystems have the potential to resist quantum 
computing attacks, but other cryptosystems are insecure against quantum computing attacks 
[11]. Finally, lattice-based cryptosystems require less computational cost than other 
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cryptosystems. With these in mind, there are proposed many lattice-based cryptosystems such 
as standard signatures [12][13][14][15][16], (hierarchical) identity-based signatures [15][17], 
group signatures [18], ring signatures [19][20], designated verifier signatures [21], 
homomorphic signatures [22][23], public key encryptions [16], (hierarchical) identity-based 
encryptions [12][13][24][25][26], homomorphic encryptions [27], and so on. 

1.1.3 Homomorphic Signatures 
Transitive signatures are related to homomorphic signatures formalized by Robert Johnson et 
al. in 2002 [28]. In a homomorphic signature scheme, a signer wants to authenticate data and 
anyone without the knowledge of the secret can generate a valid signature for computing on 
signed data. In 2011, Dan Boneh and David Mandell Freeman proposed two linearly 
homomorphic signature schemes from lattices [22][23]. 

1.2 Our Contributions 
We propose two transitive signature schemes for undirected graphs from lattices. The first 
scheme is provably secure in the random oracle model and the second scheme is provably 
secure in the standard model. 

Our transitive signature schemes are stateful. In 2012, Abhishek Banerjee et al. proposed 
pseudorandom functions from lattices [29]. With the pseudorandom functions from lattices, 
our stateful transitive signature schemes can be transformed into stateless transitive signature 
schemes [10]. 

All existing transitive signature schemes are insecure against quantum computing attacks. 
Therefore, we propose the first transitive signature schemes that have the potential to resist 
quantum computing attacks. Our first transitive signature scheme which is motivated by Craig 
Gentry et al.’s signature scheme from lattices [12] is provably secure in the random oracle 
model. To design our transitive signature scheme, we use a signature value in Craig Gentry et 
al.’s signature scheme that has a particular coset of q -ary lattices [12]. Our second transitive 
signature scheme is provably secure in the standard model. To make our transitive signature 
scheme secure in the standard model, we use the idea of the k -time signature scheme from 
lattices by Dan Boneh and David Mandell Freeman [22] and a signature value that has a 
particular coset of q -ary lattices [12]. 

2. Preliminaries 

2.1 Notations 
Let n  be a security parameter. We denote integers, real numbers, the ring of integers modulo 

2q ≥  by  ,  , and q , respectively. We denote matrices by upper-case letters (e.g., A ) 
and vectors by lower-case letters (e.g., v ). We denote the Euclidean norms of v  by v 

. We 
use standard big- O  notation. For all integer > 0c , we say that a function 

( ) = ( ) :cf n O n− +→   is negligible in n . If ( )cq n∈Θ , for all integer > 0c , we say 
= poly( )q n . If v  is selected from a distribution   at random, we denote v ← . We 

denote a concatenation of 1v  and 2v  by 1 2|v v . Let Round( )v  be the function that rounds the 
coordinates of its argument vector v  to the nearest integers. 
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2.2 Lattices 
In this paper, we will be interested in m -dimensional integer lattices which are defined as 
follows: 
 
Definition 2.1. Given any basis 1= { , , } m

mB b b ⊂  , an m -dimensional integer lattice Λ  

and a dual lattice *Λ  of Λ  are defined as follows: 

=1
= { = : } ,

m
m m

i i
i

B z z b zΛ ⋅ ∈ ⊆∑                                           (1) 

 * = { : , , } .m mx y x yΛ ∈ ∀ ∈Λ 〈 〉∈ ⊆                                        (2) 
 
  In particular, we will use q -ary lattices and their cosets which are defined as follows: 
 
Definition 2.2. Given any uniformly random matrix n m

qA ×∈ , a zero vector 0 n
q∈ , and any 

syndrome n
qu∈ , a q -ary lattice ( )q A⊥Λ  and a coset ( )u

q AΛ  of ( )q A⊥Λ  are defined as 
follows: 

 ( ) { : 0(mod )} ,m m
q A v A v q⊥Λ = ∈ ⋅ = ⊆                                    (3) 

 ( ) = { : =  (mod )} .u m m
q A v A v u qΛ ∈ ⋅ ⊆                                    (4) 

2.2.1 Gaussian Distributions 
We recall Gaussian distributions. 
 
Definition 2.3 (Gaussian function). Let   be a d -dimensional subspace of m . For 1m ≥ , 

> 0s , x∈ , and c∈ , a Gaussian function , , ( )s c xρ  is defined as follows: 

 2 2
, , ( ) = exp( / ).s c x x c sρ p− −                                           (5) 

 
Definition 2.4 (Continuous distribution). Let =  span ( )Λ ⊂ . For x∈Λ , a continuous 
distribution , , ( )s c x  with density function is defined as follows: 

 , ,
, ,

, ,

( )
( ) = .

( ) 
s c

s c
s cx

x
x

x dx
ρ
ρ

∈∫





                                               (6) 

 
Definition 2.5 (Discrete distribution). Let =  span ( )Λ ⊂ . For x∈Λ , a discrete 
distribution , , ( )s c xΛ  with density function over Λ  is defined as follows: 

 , ,
, ,

, ,

( )
( ) = .

( )
s c

s c
s c

x
xΛ Λ









                                                   (7) 

For convenience, , ,0 ( )s xρ  and , ,0 ( )s x  are abbreviated as , ( )s xρ  and , ( )s x , 
respectively. 
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Definition 2.6 (Gaussian parameter). Let *Λ  be a dual lattice of Λ . For > 0ε ∈ , a 
Gaussian parameter ( )εη Λ  is the smallest s  such that *

,1/ ( \{0})sρ εΛ ≤ . 

2.2.2 Trapdoor Generation 

We will use the trapdoor generation algorithm GenTrap(1 ,1 , )n m q  which is as follows: 
 
Theorem 2.7 (Trapdoor generation) [16]. Given any integers 1n ≥ , = ( log )m O n q , and 

2q ≥ , the trapdoor generation algorithm GenTrap(1 ,1 , )n m q  outputs a uniformly random 

matrix n m
qA ×∈  and a trapdoor matrix , ( log )

m nl
nT

ω
×←   of ( )q A⊥Λ , where =m m nl+ , 

= ( )m O nl , = (log )l O n , and the rank of A  is n . 

2.2.3 Gaussian Pre-image Sampling 
We will use the Gaussian pre-image sampling algorithm SampleD( , , , )A T u s  which is as 
follows: 
 
Theorem 2.8 (Gaussian pre-image sampling) [16]. Given any uniformly random matrix 

n m
qA ×∈ , any trapdoor matrix , ( log )

m nl
nT

ω
×←   of ( )q A⊥Λ , any syndrome n

qu∈ , and large 

enough = ( log )s O n q , the Gaussian pre-image sampling algorithm SampleD( , , , )A T u s  
outputs a vector v . The statistical distance between the distribution of v  and 

( ), ( log )u A s nq ωΛ ⋅
  

is negligible in n . 

2.2.4 Gaussian Domain Sampling 

We will use the Gaussian domain sampling algorithm SampleDom(1 , )m s  which is as 
follows: 
 
Theorem 2.9 (Gaussian domain sampling) [12]. Given any positive integer m  and large 
enough s , the Gaussian domain sampling algorithm SampleDom(1 , )m s  outputs a vector 

,
m

sv ←  . 

2.2.5 Hard Problems 

The securities of our constructions are based on the SIS  problem and k - SIS  problem, 
respectively. The SIS  problem is defined as follows: 
 
Definition 2.10 (SIS  problem) [30][12]. Given any uniformly random matrix n m

qA ×∈ , the 

, ,SISq m β  problem is to find a non-zero vector mv∈  such that 0(mod )A v q⋅ =  and 
v β≤  . 
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The advantage SISAdv ( )n  of an algorithm   in the , ,SISq m β  problem is the probability 

that   solves the , ,SISq m β  problem. 
 

The k -SIS  problem is defined as follows: 
 
Definition 2.11 ( k -SIS  problem) [22]. Given any uniformly random matrix n m

qA ×∈  and 

k  vectors 1 k ( ),
, ,

A sq
v v ⊥Λ

←   such that 1 k 0(mod )A v A v q⋅ = = ⋅ = , the k - , , ,SISq m sβ  

problem is to find a non-zero vector mv∈  such that 0(mod )A v q⋅ = , v β≤  , and v  is 
not in  -span 1 k({ , , })v v . 
 

The advantage k SISAdv ( )n−
  of an algorithm   in the k - , , ,SISq m sβ  problem is the 

probability that   solves the k - , , ,SISq m sβ  problem. 
 

The SIS  problem for ( log )q n nβ ω≥ ⋅ ⋅  is hard assuming worst-case hardness of 
approximating the SIVP  on lattices [30][12]. The k -SIS  problem for k = ( / log )O n n  is 
hard assuming average-case hardness of the SIS  problem [22][31]. 

2.2.6 Useful Lemmas 
In this paper, we will use the following lemmas: 
 
Lemma 2.12 [30][13][16]. For {0,1}ε ∈ , ( ( ))qs Aεη

⊥≥ Λ  for some uniformly random 

matrix n m
qA ×∈ , ( ( ))qc span A⊥∈ Λ , and , ,s cx Λ← , the probability of x s m≥ ⋅   is 

negligible in n  and the probability of =x c  is negligible in n . 
 
Lemma 2.13 [22]. Let q  be an odd prime, let ( log )m O n q≥ , and let > ( log )s mω . 

Given an instance k
1 k( , , , ) n m m

qA v v × ×∈ ×    of the k - , , ,SISq m sβ  problem for any β , 

1 k( ,  (mod 2), ,A v v  k
2 (mod 2)) n m m

q
× ×∈ ×   is statistically indistinguishable from 

uniform. 
 
Lemma 2.14 [22]. Let m  be an integer and k < m  an integer. The probability that the rank of 
a uniformly random matrix k

2
mV ×∈  is not k  is at most 1/ 2m k− . 

 
Lemma 2.15 [22]. Let ( log )m O n q≥ , let 1/4k (log ) < min( , )n s mω⋅ , and let 

k
1 k( , , , ) n m m

qA v v × ×∈ ×    be an instance of the k - , , ,SISq m sβ  problem for any β . There 

exist only 1 k( , , )v v± ±  such that the non-zero vectors of length at most 1.1 / 2s m p⋅ ⋅  in 

 -span 1 k({ , , })v v . 
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2.3 Definitions for Transitive Signatures 
We define transitive signatures. A transitive signature scheme TS = {TS.Gen,  
TS.Sign,TS.Vrfy,TS.Comp} is specified as follows: 
 
 TS.Gen(1 )n : On input the security parameter 1n , output a public key pk  and a secret 

key sk . 
 TS.Sign( , ( , ))sk i j : On input the secret key sk  and the edge ( , )i j , output a signature 

,i jσ  on the edge ( , )i j . 
 ,TS.Vrfy( , ( , ), )i jpk i j σ : On input the public key pk , the edge ( , )i j , and the 

signature ,i jσ  on the edge ( , )i j , output a bit 1 if ,i jσ  is valid and output a bit 0  
otherwise. 

 , ,TS.Comp( , ( , , ), , )i j j kpk i j k σ σ : On input the public key pk , the signature ,i jσ  on 

( , )i j , the signature ,j kσ  on ( , )j k , output a valid signature ,i kσ  on ( , )i k . 
 

Transitive signatures basically have to satisfy correctness, transitivity, and transitive 
unforgeability under chosen-edge attacks. First, we define that a transitive signature scheme 
TS  is correct if, for any valid signature ,i kσ  on the edge ( , )i k  (generated with the 

TS.Sign( , ( , ))sk i k  algorithm) or for any valid combined signature ,i kσ  on ( , )i k  (generated 

with the TS.Comp( , ( , , ),pk i j k , ,, )i j j kσ σ  algorithm), the ,TS.Vrfy( , ( , ), )i kpk i k σ  
algorithm outputs a bit 1 with all but negligible probability. 

Next, we define that a transitive signature scheme TS is transitive if, for two signatures 
,i jσ  on ( , )i j  and ,j kσ  on the edge ( , )j k , anyone without the knowledge of the secret key 

can derive a signature ,i kσ  on ( , )i k  which is indistinguishable from another signature ,i kσ ′  
on ( , )i k  (generated with the TS.Sign( , ( , ))sk i k  algorithm). 

Finally, we define that a transitive signature scheme TS is transitively unforgeable under 
chosen-edge attacks if, in the following game TU

TS,Game ( )n  between an algorithm   and a 

forger  , the advantage TU
TS,Adv ( )n  of   is negligible. 

 
 Setup:   runs the TS.Gen(1 )n  algorithm to get ( , )pk sk .   sends pk  to  . 
 Signing queries:   sends the edge ( , )i j  to  .   runs the TS.Sign( , ( , ))sk i j  

algorithm to get ,i jσ  and sends it to  . 

 Output:   outputs the edge * *( , )i j  and the signature * *,i j
σ . If the 

* *
* *,

TS.Vrfy( , ( , ), )
i j

pk i j σ  algorithm outputs a bit 1 and the edge * *( , )i j  is not in 

the transitive closure of previously signed edges, then   wins the game 
TU
TS,Game ( )n . 
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The advantage TU
TS,Adv ( )n  of   in the game TU

TS,Game ( )n  is the probability that   

wins the game TU
TS,Game ( )n . 

2.4 Chameleon Hash Function 
In the Proof of Theorem 4.3, we will use a chameleon hash function proposed by David Cash 
et al. in 2010 [13]. David Cash et al.’s chameleon hash function 

*H( , ) :{0,1} {0,1} {0,1}m n⋅ ⋅ × →  has the following properties: 
 

1. Trapdoor property: Given H( , )ii r  and j i≠ , one with the knowledge of the trapdoor 
information can sample jr  such that H( , ) = H( , )i ji r j r . 

2. Collision-resistance property: It is hard to compute two pairs ( , )ii r  and ( , )jj r  without 

the knowledge of the trapdoor information such that H( , )ii r  = H( , )jj r  and 

( , ) ( , )i ji r j r≠ . 
 

David Cash et al.’s chameleon hash function H( , )⋅ ⋅  is collision-resistant assuming the 

, ,SISq m β  problem. 

3. Our Construction for Undirected Graphs in the Random Oracle Model 
We construct a transitive signature scheme for undirected graphs in the random oracle model. 
Our scheme involves the following parameters: 
 
 A security parameter is n . 
 The dimension of signatures is =m m nl+ , where = ( )m O nl  and = (log )l O n . 
 = poly( )q n . 
 A Gaussian parameter is = ( log ) ( log )cs O n n nω⋅ , where c  is constant. 

 
We construct our scheme 1 1 1 1 1TS = {TS .Gen,TS .Sign,TS .Vrfy,TS .Comp}  as follows: 

 
 1TS .Gen(1 )n : On input the security parameter 1n : 

1. Compute ( , )A T  using the GenTrap  algorithm, where n m
qA ×∈  and 

, ( log )
m nl

nT
ω
×←  . 

2. Choose a hash function *H( ) :{0,1} n
q⋅ →  . 

i. Note that the security analysis will view H( )⋅  as a random oracle. 
3. Output a public key = ( ,H( ))pk A ⋅  and a secret key =sk T . 
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 1TS .Sign( , ( , ))sk i j : On input the secret key =sk T  and the edge ( , )i j : 
1. If state ( )St i  is empty, compute = H( ) n

i qh i ∈ , sample 
( ),

i hi A sq

v
Λ

←  using the 

Gaussian pre-image sampling algorithm SampleD  in the Theorem 2.8, and set 
( ) = iSt i v . 

2. If state ( )St j  is empty, compute = H( ) n
j qh j ∈ , sample 

( ),
j h j A sq

v
Λ

←  using 

the Gaussian pre-image sampling algorithm SampleD  in the Theorem 2.8, and set 
( ) = jSt j v . 

3. Compute , =i j i jv vσ −  with states ( ) = iSt i v  and ( ) = jSt j v . 
4. Output a signature ,i jσ . 

 1 ,TS .Vrfy( , ( , ), )i jpk i j σ : On input the public key = ( ,H( ))pk A ⋅ , the edge ( , )i j , and 

the signature ,i jσ : 

1. Compute = H( ) n
i qh i ∈  and = H( ) n

j qh j ∈ . 

2. Output a bit 1 if  , 2i j s mσ ≤ ⋅   and , =  (mod )i j i jA h h qσ⋅ − , and output a bit 

0  otherwise. 
 1 , ,TS .Comp( , ( , , ), , )i j j kpk i j k σ σ : On input the public key = ( ,H( ))pk A ⋅ , the 

signature ,i jσ  on ( , )i j , the signature ,j kσ  on ( , )j k : 
1. Compute , , ,=i k i j j kσ σ σ+ . 
2. Output a signature ,i kσ .  

3.1 Correctness 

We show that our scheme 1TS  is correct. 
 
Theorem 3.1. Our scheme 1TS  is correct. 
 
Proof of Theorem 3.1. The 1TS .Sign( , ( , ))sk i j  algorithm can sample iv  and jv  such that 

iv s m≤ ⋅  , jv s m≤ ⋅  , =  (mod )i iA v h q⋅ , and =  (mod )j jA v h q⋅ . That is, 

, = ( ) =  (mod )i j i j i jA A v v h h qσ⋅ ⋅ − −  and , = 2i j i jv v s mσ − ≤ ⋅    . 
The 1 , ,TS .Comp( , ( , , ), , )i j j kpk i j k σ σ  algorithm can compute 

, , = ( ) ( ) =i j j k i j j k i kv v v v v vσ σ+ − + − −  such that iv s m≤ ⋅  , kv s m≤ ⋅  , 

=  (mod )i iA v h q⋅ , and =  (mod )k kA v h q⋅ . That is, 

, = ( ) =  (mod )i k i k i kA A v v h h qσ⋅ ⋅ − −  and , = 2i k i kv v s mσ − ≤ ⋅    . 
Therefore, our scheme 1TS  is correct.                                                                                      
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3.2 Transitivity 

We show that our scheme 1TS  is transitive for undirected graphs. 
 
Theorem 3.2. Our scheme 1TS  is transitive for undirected graphs. 
 
Proof of Theorem 3.2. The 1 , ,TS .Comp( , ( , , ), , )i j j kpk i j k σ σ  algorithm computes as 
follows: 

 , , ,=i k i j j kσ σ σ+ = i j j kv v v v− + − = .i kv v−                                  (8) 
 

A combined signature ,i kσ  on the edge ( , )i k  generated with the 1TS .Comp  

, ,( , ( , , ), , )i j j kpk i j k σ σ  is indistinguishable from ,i kσ ′  on the edge ( , )i k  generated with the 

1TS .Sign( , ( , ))sk i k . 
On the other hand, ,i jσ  can be easily made from ,j iσ  as follows: 

, ,=i j j iσ σ− = ( )j iv v− − = .i jv v−                                          (9) 
 

Therefore, our scheme 1TS  is transitive for undirected graphs.                                               

3.3 Transitive Unforgeability 

We show that our scheme 1TS  is transitively unforgeable under chosen-edge attacks in the 
random oracle model. 
 
Theorem 3.3. Our scheme 1TS  is transitively unforgeable under chosen-edge attacks in the 

random oracle model if the , ,SISq m β  problem for = 4s mβ ⋅  is hard. 
 
Proof of Theorem 3.3. Let H( )⋅  be a random oracle controlled by  . Then we can construct 

  attacking the , ,SISq m β  problem for = 4s mβ ⋅  if there exists a forger   mounting 

transitive forgery attacks on 1TS  as follows: 
 
 Setup: On input an instance n m

qA ×∈  of the , ,SISq m β  problem: 
1.   sends =pk A  to  . 

 H -queries: On input the i -th node i : 
1.   samples ,

m
i sv ←   using the SampleDom(1 , )m s  algorithm. 

2.   computes = n
i i qh A v⋅ ∈ . 

3.   sends ih  to  . 
4.   adds a tuple { , , }i ii v h  to the hash table. 
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 Signing queries: On input the edge ( , )i j : 
1. If i  already appears on the hash table,   looks up { , , }i ii v h  in the hash table. 

Otherwise,   queries i  to the H -queries phase to get { , , }i ii v h . 
2. If j  already appears on the hash table,   looks up { , , }j jj v h  in the hash table. 

Otherwise,   queries j  to the H -queries phase to get { , , }j jj v h . 
3.   computes , =i j i jv vσ − . 
4.   sends ,i jσ  to  . 

i. Note that the number of signing queries is = poly( )Q n . 
 Output: Assume that   output a forged signature * *,i j

σ  on the edge * *( , )i j .   

proceeds as follows: 
1.   takes *

* *{ , , }
i i

i v h  and *
* *{ , , }

j j
j v h  from the hash table. 

2.   computes * * * *,
=

i j i j
z v vσ − + . 

i. Note that the probability of * * * *,
=

i j i j
v vσ −  is negligible in n  by Lemma 2.12. 

ii. The Euclidean norm of z  is 4 = .z s m β≤ ⋅   
3.   outputs z  as a solution to the , ,SISq m β  problem. 

 
The advantage TU

TS ,1
Adv ( )n  of   in the game TU

TS ,1
Game ( )n  is computed as follows:  

SIS TU
TS ,1

Adv Adv .≥                                                     (10) 

  

4. Our Construction for Undirected Graphs in the Standard Model 
We construct a transitive signature scheme for undirected graphs in the standard model. Our 
scheme involves the following parameters: 
 
 A security parameter is n . 
 The dimension of signatures is =m m nl+ , where = ( )m O nl  and = (log )l O n . 
 = poly( )q n  is an odd prime. 

 A Gaussian parameter is = ( log ) ( log )cs O n n nω⋅ , where c  is constant. 
 The number of nodes is k = ( / log )O n n . 

 
We construct our scheme 2 2 2 2 2TS = {TS .Gen,TS .Sign,TS .Vrfy,TS .Comp} as follows: 

 
 2TS .Gen(1 )n : On input the security parameter 1n : 

1. Compute ( , )A T  using the GenTrap  algorithm, where 2
n m

qA ×∈  and 
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, ( log )
m nl

nT
ω
×←  . 

2. Choose a hash function *H( , ) :{0,1} {0,1} {0,1}m n⋅ ⋅ × → . 
3. Output a public key = ( , H( , ))pk A ⋅ ⋅  and a secret key =sk T . 

 2TS .Sign( , ( , ))sk i j : On input the secret key =sk T  and the edge ( , )i j : 

1. If state ( )St i  is empty, choose {0,1}m
ir ← , compute = H( , ) {0,1}n

i ih i r ∈ , 
sample 

( ),2
i q hi A sq

v ⋅
Λ

←  using the Gaussian pre-image sampling algorithm 

SampleD  in the Theorem 2.8, and set ( ) = ( , )i iSt i v r . 

2. If state ( )St j  is empty, choose {0,1}m
jr ← , compute = H( , ) {0,1}n

j jh j r ∈ , 

sample 
( ),2

j q h j A sq

v ⋅
Λ

←  using the Gaussian pre-image sampling algorithm 

SampleD  in the Theorem 2.8, and set ( ) = ( , )j jSt j v r . 

3. Compute , =i j i jv v v−  with states ( ) = ( , )i iSt i v r  and ( ) = ( , )j jSt j v r . 

4. Output a signature , ,= ( , , )i j i j i jv r rσ . 

 2 ,TS .Vrfy( , ( , ), )i jpk i j σ : On input the public key = ( , H( , ))pk A ⋅ ⋅ , the edge ( , )i j , 

and the signature , ,= ( , , )i j i j i jv r rσ : 

1. Compute = H( , ) {0,1}n
i ih i r ∈  and = H( , ) {0,1}n

j jh j r ∈ . 

2. Output a bit 1 if  , 1.1 /i jv s m p≤ ⋅ ⋅   and , =  (mod 2 )i j i jA v q h q h q⋅ ⋅ − ⋅ , and 

output a bit 0  otherwise. 
 2 , ,TS .Comp( , ( , , ), , )i j j kpk i j k σ σ : On input the public key = ( , H( , ))pk A ⋅ ⋅ , the 

signature , ,= ( , , )i j i j i jv r rσ  on the edge ( , )i j , the signature , ,= ( , , )j k j k j kv r rσ  on the 
edge ( , )j k : 
1. Compute , , ,=i k i j j kv v v+ . 

2. Output a signature , ,= ( , , )i k i k i kv r rσ . 

4.1 Correctness 

We show that our scheme 2TS  is correct. 
 
Theorem 4.1. Our scheme 2TS  is correct. 
 
Proof of Theorem 4.1. The 2TS .Sign( , ( , ))sk i j  algorithm can sample iv  and jv  such that 

1.1 / 2iv s m p≤ ⋅ ⋅  , 1.1 / 2jv s m p≤ ⋅ ⋅  , =  (mod 2 )i iA v q h q⋅ ⋅ , and 

=  (mod 2 )j jA v q h q⋅ ⋅ . That is, , = ( ) =  (mod 2 )i j i j i jA v A v v q h q h q⋅ ⋅ − ⋅ − ⋅  and 

, = 1.1 /i j i jv v v s m p− ≤ ⋅ ⋅    . 
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The 2 , ,TS .Comp( , ( , , ), , )i j j kpk i j k σ σ  algorithm can compute 

, , = ( ) ( ) =i j j k i j j k i kv v v v v v v v+ − + − −  such that 1.1 / 2iv s m p≤ ⋅ ⋅  , 

1.1 / 2kv s m p≤ ⋅ ⋅  , =  (mod 2 )i iA v q h q⋅ ⋅ , and =  (mod 2 )k kA v q h q⋅ ⋅ . That is, 

, = ( ) =  (mod 2 )i k i k i kA v A v v q h q h q⋅ ⋅ − ⋅ − ⋅  and , = 1.1 /i k i kv v v s m p− ≤ ⋅ ⋅    . 
Therefore, our scheme 2TS  is correct.                                                                                     

4.2 Transitivity 

We show that our scheme 2TS  is transitive for undirected graphs. 
 
Theorem 4.2. Our scheme 2TS  is transitive for undirected graphs. 
 
Proof of Theorem 4.2. The 2 , ,TS .Comp( , ( , , ), , )i j j kpk i j k σ σ  algorithm computes as 
follows: 

, , ,=i k i j j kv v v+ = i j j kv v v v− + − = .i kv v−                                 (11) 
 

A combined signature ,i kσ  on ( , )i k  generated with the 2TS .Comp  

, ,( , ( , , ), , )i j j kpk i j k σ σ  is indistinguishable from ,i kσ ′  on the edge ( , )i k  generated with the 

2TS .Sign( , ( , ))sk i k . 

, ,= ( , , )i j i j i jv r rσ  can be easily made from , ,= ( , , )j i j i j iv r rσ  as follows: 

, ,=i j j iv v− = ( )j iv v− − = .i jv v−                                         (12) 
 

Therefore, our scheme 2TS  is transitive for undirected graphs.                                              

4.3 Transitive Unforgeability 

We show that our scheme 2TS  is transitively unforgeable under chosen-edge attacks in the 
standard model. 
 
Theorem 4.3. Our scheme 2TS  is transitively unforgeable under chosen-edge attacks in the 

standard model if the k - , , ,SISq m sβ  problem for = 1.1 /s mβ p⋅ ⋅  is hard. 
 
Proof of Theorem 4.3. We can construct an algorithm   attacking the k - , , ,SISq m sβ  problem 

for = 1.1 /s mβ p⋅ ⋅  if there exists a forger   mounting transitive forgery attacks on 2TS  
as follows: 
 
 Setup: On input an instance 1 k( , , , )B v v  of the k - , , ,SISq m sβ  problem, where 

n m
qB ×∈  and 1 k ( ),

, ,
B sq

v v ⊥Λ
←  : 
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1.   chooses a chameleon hash function *H( , ) :{0,1} {0,1} {0,1}m n⋅ ⋅ × → . 
2.   chooses 1 k, , {0,1}nh h ← . 

3.   lets k
1 k= [ | | ] mV v v ×∈  . 

4.   lets k
1 k= [ | | ] {0,1}nH h h ×∈ . 

5.   chooses 2 {0,1}n mA ×←  such that 2 =  (mod 2)A V H⋅ . 
i. Note that  (mod 2)V  is uniformly random by Lemma 2.13. 

ii. Note that the rank of k
2
mV ×∈  is k  with all but negligible probability by 

Lemma 2.14. 
6.   computes 2

n m
qA ×∈  such that 2=  (mod 2)A A  and =  (mod )A B q  using the 

Chinese remainder theorem. 
i. Note that  (mod 2 )A q  is uniformly random by Lemma 2.13.  

7.   sends = ( ,H( , ))pk A ⋅ ⋅  to  . 
 Signing queries: On input the edge ( , )i j : 

1.   samples , {0,1}m
i jr r ←  such that = H( , )i ih i r  and = H( , )j jh j r . 

2.   computes , =i j i jv v v− . 

3.   sends , ,= ( , , )i j i j i jv r rσ  to  . 
i. Note that the number of signing queries is poly( )n . 

 Output: Assume that   output a forged signature * * * * * *, ,
= ( , , )

i j i j i j
v r rσ  on the edge 

* *( , )i j .   proceeds as follows: 
1.   outputs * *,i j

v  as a solution to the k - , , ,SISq m sβ  problem. 

i. Note that the following equation is correct: 

* *,i j
A v⋅ * *

* *= H( , ) H( , ) (mod 2 )
i j

q i r q j r q⋅ − ⋅ * *,
=  (mod )

i j
B v q⋅ 0(mod ).q=   (13) 

ii. By Lemma 2.15, * *,i j
v  is not in  -span 1 k({ , , })v v  and the Euclidean norm 

of * *,i j
v  is as follows: 

* *,
1.1 / = .

i j
v s m p β≤ ⋅ ⋅                                              (14) 

 
The advantage TU

TS ,2
Adv ( )n  of   in the game TU

TS ,2
Game ( )n  is computed as follows: 

k SIS TU
TS ,2

Adv Adv .− ≥                                                    (15) 

5. Conclusion 
We have proposed the first transitive signature schemes for undirected graphs from lattices. 
The first scheme is provably secure in the random oracle model and the second scheme is 
provably secure in the standard model. The question of constructing a transitive signature 
scheme for directed graphs still remains open. 
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