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Abstract 

 
Location-based services (LBSs) have become popular in recent years due to the 
ever-increasing usage of smart mobile devices and mobile applications through networks. 
Although LBS application provides great benefits to mobile users, it also raises a sever privacy 
concern of users due to the untrusted service providers. In the lack of privacy enhancing 
mechanisms, most applications of the LBS may discourage the user’s acceptance of location 
services in general, and endanger the user’s privacy in particular. Therefore, it is a great 
interest to discuss on the recent privacy-preserving mechanisms in LBSs. Many existing 
location-privacy protection-mechanisms (LPPMs) make great efforts to increase the attacker’s 
uncertainty on the user’s actual whereabouts by generating a multiple of fake-locations 
together with user’s actual positions. In this survey, we present a study and analysis of existing 
LPPMs and the state-of-art privacy measures in service quality aware LBS applications. We 
first study the general architecture of privacy qualification system for LBSs by surveying the 
existing framework and outlining its main feature components. We then give an overview of 
the basic privacy requirements to be considered in the design and evaluation of LPPMs. 
Furthermore, we discuss the classification and countermeasure solutions of existing LPPMs 
for mitigating the current LBS privacy protection challenges. These classifications include 
anonymization, obfuscation, and an encryption-based technique, as well as the combination of 
them is called a hybrid mechanism. Finally, we discuss several open issues and research 
challenges based on the latest progresses for on-going LBS and location privacy research. 
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1. Introduction 

Recent advances in mobile computing makes location based service (LBS) increasingly 
popular, which attract millions of individuals. LBS refers to a location information and 
convenient services provided to mobile users based on the geographic position and other 
information of users’ mobile devices to obtain their real location data [1]-[2]. In this context, 
user oriented LBS applications are developed to obtain location related information relevant to 
their current position and surroundings. Common examples include direct location sharing 
with friends (e.g., uploading real-time location data and tagging services) and sharing with 
business sectors (e.g., search for near-by services, location check-in and search near-by 
friends), which help the user to share and determine their current position with friends in the 
communication networks [3]-[4]. Other typical examples of LBS applications include map 
applications (e.g., Google Maps), point of interest retrieval (e.g., Around-Me), coupons or 
discount offers (e.g., Group-on), GPS navigation (e.g., Tom-tom) and location-aware social 
networks (e.g., Face-book, Weibo, Foursquare, Wechat) [5]. A more large-scale LBS 
application could ask users around a region or even country to disclose their exact locations for 
security and safety purpose (e.g., in military, medical care, emergency relief, people's 
livelihood, etc [6]. 

However, while the convenient services provided by LBS brings great benefits to mobile 
users, their usage can also raise a serious privacy risks derived from the disclosure of user 
locations. The reason for this is that when users conveniently access various LBSs, they need 
to report their real-time location information and other related service attributes in the 
communication network. The context attached to this location information contains not only 
location privacy, but also other sensitive personal information that the user usually wants to 
protect them, such as health status, living habits, home address, and social relations [7]-[8]. 
Therefore, once the private information is leaked due to untrusted third parties (such as LBS 
providers), and then it would result in opening a door to abuse of personal data and posing a 
serious threats to all aspects of the user’s privacy. For example, a malicious attacker or 
adversary using prior knowledge can re-identify personal home and work address from 
location traces (anonymous GPS data) [9]-[10], predict the user's past, present and future 
positions [11], and then infer the whereabouts of the individual from the frequency of their 
visits to a particular locations[12]-[13].  This problem has received significant attention from 
Smartphone users, LBS providers, research community, etc. Therefore, there is a growing 
interest in protecting the user's location privacy and private information from malicious 
attackers when using LBSs and media tag services.  

A number of research works have focused on developing LPPMs that allow users to modify 
actual locations disclosed to the LBS provider using different types of protection strategies 
[14-16]. These protection mechanisms help to improve the adversary's ambiguity on the user's 
real positions by running a multiple of locations from where various consecutive queries have 
reported by mobile users. In the context of LBSs, various LPPMs, such as user anonymization 
(random permutation) [17], location obfuscation [18] and encryption-based mechanisms [19], 
are further proposed to allow users in LBSs. The most popular and widely used LPPM to 
protect user positions is obfuscation-based mechanism, which consists of reporting 
fake-locations or noisy version of their location information to the service provider. A 
different LPPM consists of hiding some regions of users' positions using mix zones) [20]-[21]. 
Using this mechanism, several users do not link with service provider by changing their 
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pseudonym and prevent an adversary from attacking them. Another LPPM consists of adding 
location dummies to protect user's real location by reporting multiple false locations 
(dummies) to the LBSs provider together with the actual location [22]. The purpose of adding 
fake or dummy-locations is to increase the adversary's uncertainty on the users’ real 
movements.  

While these existing LPPMs are significant advantages, their implementation and 
evaluation methods also bring new problems and challenges. For example, generating high 
cost of dummy locations using resource constrained mobile devices over all LBS applications 
will be economically expensive in terms of resource consumption costs [23]. These are 
however likely to be an issue for self-interested LBS users in reality, since most applications 
are accessed from Smartphone devices and the users may not be sufficiently motivated to 
access them. Therefore, the presence of such malicious or selfish behaviors may have an 
adverse effect on privacy protection system. For these challenges, an effective protection 
design methods, such as adaptive and optimal clustering methods, are useful to account for 
resource limitations (e.g. reduce energy and bandwidth consumption) [24-26]. In addition, 
there are some LBS applications that require the mobile users to access them continuously 
(rather than sporadically), and on the other side, there are the majority of LBSs, such as 
various nearby points-of-interest search services where users reveal their location sporadically 
(rather than continuously). In this case, there are two successive accesses of a user to the LBS 
access pattern with non-negligible gaps in time. Therefore, an effective protection mechanism 
needs to secure in LBS applications when users to share their location continuously and 
sporadically over space and time [27]. Another important issue is that of the effectiveness of 
protecting the users’ privacy and service quality requirements. For example, possible 
protection challenges include designing effective LPPMs together with the generic adversarial 
model and objectives, respecting and incorporating the user’s service quality requirements and 
sensitivities. In particular, the assumption about designs of effective yet useful LPPMs tend to 
be incomplete, without adversarial knowledge and objective to track the users visiting 
particular locations [28]. Obviously, there is a mismatch between the designs of these LPPMs 
and the objective comparison results of them without considering a generic adversarial model. 
To be consistently model the goals and results of various LPPMs together with the adversary’s 
objective and knowledge, new mechanisms to preserve the user’s location privacy and service 
quality requirements are needed. In this respect, several authors have been recently presented 
toward formalizing the users’ accesses to LBS and their desirable service quality and location 
privacy requirements, modeling various LPPM, and their suitable privacy metrics to evaluate 
the performance of the corresponding LPPMs [29-31]. These contributions support the 
foundation that establishes the relationships between different popular types of LBS privacy 
metrics. The quantification and protection models allow us to specify the existing evaluation 
methods for LPPM that explicitly accounts for a generic adversarial model for privacy metrics. 
This is a key issue in LBS and media-tagged service systems and therefore, it is a considerable 
attention of this survey paper.  

In this paper, we survey the state-of-the-art research efforts for LPPMs applied in LBS 
applications. After a general description of privacy quantification framework and its main 
components, we analyses the potential privacy risks associated with LBSs, the architecture, 
and evaluation of LPPMs and then address some countermeasure solutions. For this purpose, 
we adopt the popular LPPMs, such as user anonymization, location obfuscation, 
encryption-based methods, and the combined system (hybrid mechanism) to address the 
current LBS privacy protection challenges. Finally, we highlight the most important issues to 
be considered in the design and evaluation of LPPMs, and then discuss several open research 
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challenges based on the latest progresses in the topic of location privacy and the research 
community. 

We present the structure of our contributions as follows. Section 2 describes the general 
system architecture of privacy quantification framework. Section 3 introduces LBS privacy 
requirements and performance metrics. Section 4 presents the state-of-art privacy measures 
and comparison analysis. Section 5 provides several open research challenges. Finally, 
Section 6 concludes our discussion with summary. 

2. Overview of Privacy Quantification Framework 
In order to understand the LPPM and attack strategies deployed in a various LBS, we first need 
to know the structure of the general framework for privacy quantification and its main 
components that affect the location privacy of mobile users. Therefore, in this section we first 
present the general framework for the user's mobility and their access patterns to LBSs, and 
then describe its main components, as shown in Fig. 1. As shown in the figure, the framework 
consists of the following three main components [27], [30]. (i) A mobile users, a user’s mobile 
devices are equipped with an integrated position sensor that uses a variety of positioning 
technology to access the LBS at different instant of times. (ii) The trusted system (LPPMs), 
which provide location privacy guarantees for mobile users before sending the user’s real 
location trace to the LBS. What is the user’s actual location when accessing LBS? The LPPM 
wants to protect the actual location(s) by producing appropriate pseudo-location(s). 
 

 
Fig. 1. General block diagram for user-specific privacy and quality-loss quantification model  

 
Hence, when accessing the LBS, users only expose the output of LPPM, instead of sharing 

their actual locations and the adversary can infer it by the observed location traces. The 
existing LPPMs mainly include pseudonyms (removing the user's identity and using a 
temporary-identity), randomization (adding dummy locations), and obfuscation mechanisms 
(spreading or perturbing spatiotemporal information in queries). (iii) untrusted LBS providers 
(i.e., an adversary, who strives to observe the private information of mobile users exposed to 
the LBS). When a user uses various LBS applications, the service provider collects the user's 
information or service attributes attached to the location-related information. 

The location-privacy of mobile users and the success rate of the adversary in his location 
tracking attacks on the impact of users' queries are two sides of one coin, which are highly 
interconnected together using LBS evaluation metrics. Given the users' observed location 
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traces and a certain constraints of users’ mobility profiles, the adversary tries to speculate and 
then infer the user's real location traces [11]. Hence, the users’ obtained service quality and 
location privacy degree that they experience is evaluated given the users’ real location traces, 
the result attack and output of LPPMs. Therefore, we describe two main evaluation metrics to 
evaluate the utility loss caused by the distortion of the original query and the cost of privacy 
decision made by the adversary. These evaluation metrics are the service-quality loss and 
energy cost metrics that incurred by using different types of LPPMs and location privacy of 
users (equivalently estimation error for adversary) under some location inference 
tracking-attacks. For the rest of this paper, we discuss the location privacy issues and potential 
threat model associated with LBSs, the existing LPPMs and their performance evaluation 
metrics for quantifying the privacy gain and use's obtained service quality. 

3. Privacy Requirements and Threats in LBSs  
Although LBS applications undeniably provide novel capabilities in terms of localization 
service through mobile and GPS (Global Positioning System), they can put the privacy of the 
mobile users at LBS provider. Obviously, the collected location information embedded in 
LBSs should have localization error and therefore used to extract (infer) sensitive private 
information about user’s service request and responses. For example, we have mentioned 
earlier that most applications of LBS collect the location information attached in the LBS 
queries. The adversary can track the history of the user from the anonymous GPS data, and 
then infer the user’s personal home address, work unit and social relations, etc. [9-11].  
 

 
Fig. 2. A common client server system architecture 

 
In location-aware smart mobile devices, it has become inevitable to protect the privacy 

assets of users from malicious attackers or untrusted-service providers for the maturation of a 
healthy LBS ecosystem. Therefore, the user's location information requires certain privacy 
measures to guarantee the obtained service quality and resource utilization constraints at all 
the times. The respect of the privacy of the mobile users primarily depends on the trusted LBS 
server who has direct access to the collected location information and ensures their response to 
end users. 

http://www.jos.org.cn/html/2015/9/4857.htm%23R7
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The major location privacy requirements to ensure the safety of a LBS system and its 
extensive acceptance by its users are evaluated as follows: The first requirement is formalizing 
the desirable location privacy strategies that LPPMs should consider the user’s service quality, 
location privacy and resource utilization costs that satisfy each user’s requirements. LBS 
privacy protection strategy needs to protect the privacy of user’s location while taking into 
account the quality of service and resource optimization cost (e.g., battery and bandwidth 
consumptions). The second requirement is based on incorporating the user’s data model from 
anonymous and/or perturbed-locations. Otherwise, the adversary depends on users’ prior 
knowledge and infers their activity traces when they visit a certain locations. The third and the 
most essential requirements are finding the right evaluation metrics to determine the degree of 
privacy in which the LPPMs’ requirements are satisfied. In Fig. 2, we identify typical 
client-server system architecture common to the existing LBS architecture, where location 
information moves in the communication network and available with location server. We next 
define the architectural components conducted against the system depicted in Fig. 2 and 
determine the possible location privacy attacks in the general system model. 

3.1 LBS Privacy Threats 
The system architecture shown in Fig. 2 consists of four major components: the mobile 
terminal users, positioning systems, wireless communication networks, and location service 
provider. As shown in the figure, the system architecture empower LBS users through a range 
of mobile terminals (e.g. Smartphone and tablets) transmits location query to the service 
provider. Each user has GPS enabled smart mobile devices mounted with them, which will 
play part of location-enabled and media-tagged services. The mobile user uses a variety of 
positioning system (such as, localization through GPS) to request a service attributes in his 
nearest service of interest (e.g., hospitals) through communication networks (e.g., cellular 
network or WLAN). The location server (also known as LBS provider) responds to the user's 
query and then returns the customized result. For each request of service attributes, the server 
will return a small number of points of interest that match the user-specified service attributes. 
While a user conveniently accesses the various LBS applications, their location privacy may 
leak in the following three major parts (points), i.e., user’s mobile devices, communication 
networks and location server by itself. However, the user's location-aware mobile device may 
also be identified (hijacked) based on the collected location information attached in the LBS 
queries [7]-[8]. Therefore, how to prevent the secuirity of users' mobile device from tracking 
them is also a vital importance to the well-being of LBS application [28], [29]. Secondly, the 
user's LBS query and customized results may be eavesdropped or subjected to 
man-in-the-middle attacks when transmitted over the wireless network. Apart from the user’s 
mobile device and query results, the LBS server by itself can also be endangered. Assuming 
that a malicious or selfish attacker may be the LBS server itself and collects the user’s location 
information or service attributes contained in the service query. By doing so, the LBS provider 
transmits location data through the wireless network and may provide knowledge to the 
malicious attackers (third-party adversarial entities) about themselves. With this knowledge, 
the malicious attacker or the owner of LBS could speculate, and then infer the user's sensitive 
data [8]. To simplify privacy protection issues, a generic privacy attack model assumes that the 
untrusted LBS provider is malicious or untrustworthy and system LPPM is secure and 
trustworthy. However, the LPPM’s implementation often based on the attacker’s prior 
knowledge about user’s overall location traces. When the attacker (untrusted service-provider) 
understands the user’s choice of LPPMs, it will use the prior knowledge to update his attacking 
strategy and effectiveness. The existing LPPMs such as trusted third party anonymizers (e.g., a 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019                                         3205 

trusted cellular service provider) and obfuscation mechanisms are also not matured to provide 
users’ location privacy guaranteeing during services [32]-[33]. We next discuss the existing 
LPPMs for LBSs that takes a generic threat model in account. We also analyze how the 
adversary technically observes the users’ location traces during designing and evaluation of 
various LPPMs.  

3.2 LPPM Strategy and Functionality 
After introducing the privacy issue and possible threats to privacy in the previous section, we 
now give an overview of existing LPPM's functionality to achieve the desirable location 
privacy of users. There are a large number of research works focuses on developing the 
state-of-the-art LPPMs to protect the user’s location privacy [34-37]. These protection 
mechanisms are based on sending (reporting) a fake-locations and adding dummy-locations to 
the LBS [38] or hiding the real posisions of users by using mix-zones [39]-[40], 
anonymization and obfuscation mechanisms, in order to increase the adversary’s uncertainty 
on the user’s real positions. The first two protection mechanisms (i.e. hiding user’s location, 
and reporting a fake-location) generates multiple set of user’s positions together with real 
locations. The later two protection mechanisims are obfuscation mechanism used to modify a 
space-or time-obfuscated and location-stamps [18], [20]-[21], and location-anonymization 
(removing the user’s real-identity) and replace by k-user location identity. 

The earliest and most popularized mechanism to preserving data anonymization is location 
k-anonymity, which was first provided by [18] to determine the degree of user’s privacy in 
anonymous networks. Location k-anonymity is an extensive-general privacy concept, and 
many works regarding location privacy-protection stemmed from the k-anonymity model. 
Using this mechanisms, the users’ real-location R, is generated (modified) to separet the 
relation between adaptive adversary and LBS user, as illustrated in Fig. 1. To perform this end, 
the transformation function generates the real location R to other observed location and 
replaced by one of his valid pseudo-location R′. For instance, the spatio-temporal cloaking are 
the traditional mechanisms to protect location-privacy [18], [20], [39]. However, even though 
the spatial-cloaking mechanism gives a very good solution for privacy protection, it ignores 
the part of data integrity. To overcome the problem, several authors have been made a 
significant effort [39]-[40] to balance between location-privacy and service utility 
(data-integrity). Besides location k-anonymity, several other mechanisms have been applied 
using mix-zones to hide the actual-location of users. A mix-zone is an area of regions used to 
break the linkage between user and service-provider by changing their pseudonym [34], [41]. 
Therefore, when several users enter a mix-zone at the same time, this LPPM can effectively 
prevent an adversary from tracing them.  Another popular mechanism to protect the privacy of 
users’ location is based on adding dummy events [42]-[43], so that the real-locations are 
indistinguishable from the fake-locations, which have been generated to the syetem’s 
service-provider. The purpose of this mechanism is to update the adversary’s uncertainty by 
sending a multiple false-locations to the LBS observer together with user’s true-location. 

However, the evaluation of the existing LPPM’s design strategy mostly ignores the reality 
that the adversary might have some previous experience and prior-knowledge about users’ 
LBS access patterns and about the logic of internal-algorithm provided by the given LPPM. In 
order to capture the effectiveness of LPPMs, we abstract away the models for representing 
users’ mobility and LPPM as as a single unit that separates the user’s actual location traces and 
the adversary. Fig. 3 shows the potential elements associated with LPPMs work through three 
main architectures [27]. These are centralized (server-side), distributed (user-side), and hybrid 
system architectures.  
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(i) Centralized (server-side) architecture; in this architecture, the user uses location-aware 
mobile devices to send the LBS query to the service provider and then obtained the final query 
result. The trusted anonymous server acts as an internal-anonymizer (privacy proxy server) 
that generates users' location information before sending to the service anonymizer. 
Advantages of this structure include that it is simple to design, the communication overhead 
between the mobile terminal and the anonymous server is small. However, the disadvantages 
include that: (a) anonymous third-party system-server may become the performance 
bottleneck and the only attack point of the system; (b) anonymous server has complete 
knowledge of location information or service attributes of all users. Once an anonymous 
provider is compromised, a singular point of failures may cause a serious privacy threat that all 
users can be compromised; (c) in reality, it is difficult to design and implement a trusted 
anonymous server with a broade-range of applications.  

(ii) Distributed (user-side) architecture; in this architecture instead of letting each users 
report their position directly to the LBS server, users are organized in a separate peer-to-peer 
network, which provides all users’ positions in a group, and forwards the group to service 
provider. At the same time, the service provider can give the correct result. The LPPMs are 
performed by candidate sets of users through cooperation by each user. Advantages of this 
architecture include: (a) eliminating the performance blockage of the system; (b) having the 
user's global information, so privacy protection effect is good. The disadvantage of this 
architecture includes (a) the mobile terminal communications and computing overhead 
increase compared with central architecture. This indicates that the distributed architecture is 
harder to design, and difficult to perform in real applications, because it cannot effectively 
ensure that other users involved in privacy protection are trusted; (b) when a user requesting a 
service does not have enough peers in the vicinity, the anonymous process is difficult to 
complete.  
 

 
Fig. 3. A common LBS system architecture (a) Centralized (server-side) (b) Distributed (user-side)      

(c) hybrid architecture 
 

(iii) hybrid architecture: the third type of protection architecture can be a hybrid of both 
server-centric (centralized) and distributed (user-centric) architectures. In this architecture, a 
mobile terminal user requests the service through a trusted anonymous server, which has 
complete knowledge of the user's identity, service request and real location, etc. The candidate 
sets use a peer-to-peer network to complete privacy protection based on personalized privacy, 
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response time, and service quality requirements. The hybrid system architecture unifies the 
advantages of a centralized and a distributed architecture that can well balance the load 
between the client (user) and the anonymous server [44]. Its shortcoming is that there are a 
various system parameters, and the setting and adjustment are very complicated, so that its 
practicability has been seriously affected. 

3.3 The Performance Metrics for LPPMs 
In this section, we present intuitive privacy evaluation metrics in order to qualitatively 
evaluate and then compare the effectiveness of the corresponding protection mechanisms. The 
existing evaluation methods for LPPM targets mostly on sporadic-location and correlated 
settings at the time of LBS query issuing, and infrequently consider a trajectory-aware 
mechanism from where a number of queries are issued [6]. The major privacy quantification 
challenges to evaluate the performance of LPPMs are finding the right privacy metrics and 
incorporating user’s mobility model to which the desirable location privacy requirements are 
satisfied. In the topic of LBS and media-tag services, numerous privacy measurement methods 
have been presented to evaluate the privacy degree of users [27], [45-47]. Examples of these 
privacy metrics are uncertainty-based (location-entropy), k-anonymity, location ℓ-diversity, 
expected error-based estimator, ε-differential privacy, etc. For example, the authors of [47] 
propose a distortion-based privacy metrics to evaluate the various LPPMs and classify them in 
three categories: location-k-anonymity, location-entropy (uncertainty-based), and expected 
distance error (error-based). However, most of these privacy metrics are more specific to 
certain applications and concrete attack objectives, and therefore it is difficult to conclude for 
other frame of references [31]. The studies have shown that these privacy metrics are 
inappropriate for evaluating user’s location privacy, even for a particular case, various LBS 
privacy metrics can be exist. Because, once the location tracking attack model changes, the 
LBS privacy metric is not sufficient for evaluating the impact of query behavior on 
corresponding LPPMs performance. Therefore, it is still not clear which privacy metric is 
most suitable for a given privacy protection scenario [6]. Recently, a comprehensive 
comparison of existing privacy quantification methods has been proposed in prior research to 
address these problems. For instance, a similar but more commonly used expected error-based 
framework was further proposed in [27], [37] and [48]-[49] to formalize the impact of location 
accuracy associated with attacker reasoning attacks. This method can be applied to any attack 
model that correctly defines the distance between the actual-location of users and attacker's 
estimated value. However, this method also considers the quality of service and user attributes. 
This framework allows an adversary to understand the user’s location access patterns and 
logic of LPPM strategy, and then to capture user’s identity. Different research works also have 
adopted this analytical framework as an evaluation method and further applied to quantify 
location privacy, taking in to account the attack model, privacy threats, LPPMs’ evaluation 
methods, privacy metrics and other factors affecting user’s privacy. For example, the authors 
of [48] proposed a unified privacy quantification model, which can comprehensively compare 
the effectiveness of various LPPMs and evaluation metrics in different attack models. 

In later work, without considering any possible background knowledge possessed by the 
adversary, differential privacy [50] has become popular for quantifying location privacy. 
However, the authors justified their invent work by extending the notation of differential 
privacy to the optimal sporadic-location privacy, and then defined the formal notation of 
geo-indistinguishability to quantify the observed information lekeage incured by LPPMs. 



3208                                                                                               K. Tefera et al.: A Survey of System Architectures, Privacy Preservation, 
and Main Research Challenges on Location-Based Services 

4. The State-of-the-art Countermeasures   
In the LBS privacy protection community, protecting the user’s privacy is a basic requirement 
for the successful deployment of LBS and media-tagged service applications. Currently, a 
number of privacy protection mechanisms have been proposed to enhance user privacy, but no 
single strategy can provide a complete solution. We herein present the current state-of-the-art 
privacy measures that address the major privacy threats highlighted in Section 3.1. For this 
purpose, we build upon a user-specific protection model common to the existing privacy 
quantification model, which represents the information sharing between an adversary and the 
user [30], as shwon in the Fig. 4 below. For each studied countermeasure solutions, Table 1 
summarizes the classification, architecture, privacy threats, and service quality loss/resource 
overhead of the different LPPMs. Note that, we consider that the defense (relative to the 
attack) takes into consideration the attack (relative to the defense), which is imposed by the 
adversary. In addition, the solution also consider that the adversary observes the user's profile 
ψ(r) and output of LPPM, as well as the resource constraints in terms of quality-loss max

lossQ , 
bandwidth max

tBcos and energy cost max
tEcos requirements. For this context, according to the work in 

[30], the system model allows us to specify the current state-of-the-art privacy measures with 
respect to different attacks. This is because most of the existing proposals mostly focus on 
preserving users’ LBS privacy at the instant time of query issuing, and few are done on the 
trajectory privacy of users raising a several-number of successive locations. Our privacy 
measure uses this analytical model as an evaluation method to quantify the different levels of 
user's privacy requirements, measuring the privacy protection effect and service availability. 
 

 
Fig. 4. Information sharing between user and adversary in user-specific protection model  

 
We assume that the mobile users want to preserve their location information and 

corresponding LBS access traces from malicious attacker (an untrusted observers) that can 
observes the location exposed to the LBS. Specifically for protecting location privacy, several 
LPPMs and evaluation methods have been proposed in order to address the current LBS 
privacy protection challenges. These popular approaches can be categorized as anonymization 
(removing the user's actual location), obfuscation (reporting a fake or noisy version of their 
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location) and encryption-based techniques (using cryptographic tools) [51], which are outlined 
as follows. 

4.1 Anonymization-based Mechanisms 
These mechanisms aim to protect the privacy threats associated with LBSs transforming the 
user’s real location information in to a generalized service query that represents a group of 
users, e.g., location anonymization methods for snapshot queries [37], trajectory 
anonymization methods for continuous queries [52]-[53], etc. We consider as an example that, 
Alice uses a smartphone and request queries to a LBS provider for the nearest hospital and 
then the LBS server calculates the set of users and service request area based on its known 
user's locations. Due to untrusted LBS server, Alice's sensitive information may be 
compromised or misused. Without using anonymization mechanism, this access service could 
disclose to the adversary that Alice has health condition problems. Therefore, it is required that 
all calculated anonymization set of users sent to the LBS server to share the same service 
request area such that the LBS server cannot directly interact with the issued position to the 
original location of Alice. The basic concept of anonymization mechanism has been extended 
by various important mechanisms to increase privacy protection. The following are the most 
prominent extensions in this category, not to be discussed in depth here, and interested readers 
can refer to the literatures. These are k-anonymity [54], Tessellation [55], l-diversity [56], 
micro-aggregation [57], data aggregation [58], t-closeness [59], and historical k-anonymity 
[60]. 

4.2 Location Obfuscation-based Mechanisms 
The most prominent mechanism to protecting location privacy is to send a location-stamp 
version of the users’ real locations to the LBS provider. Examples of these protection 
mechanisms are position sharing [1], [61], random perturbation [62]-[63], point-of-interest 
[64]-[65], negative survey [19], [66]. In these mechanisms, the privacy protection is achieved 
by generating each user’s real location r in to an observed pseudo-location (obfuscated 
location) ѓ before reporting them to the LBS. This transformation is made according to a 
probability distribution f(ѓ \r)= Pr(ȓ\ѓ). Hence, the user exposes its pseudo-location r′ to the 
LBS provider instead of its actual location r. The main idea of this mechanism is that a user 
reports an observed pseudo-locations ѓ to a LBS provider or a LBS containing his location 
information instead of his actual location r i.e., protected by LPPM. 

4.3 Encryption-based Mechanisms 
In these mechanisms, privacy protection is achieved by using the cryptographic methods to 
make the user's LBS query invisible to the LBS server [67]-[68] (e.g., group signature [69], 
double encryption [70]). Encryption-based LPPM adopts a distributed architecture, which 
cannot reveal any user's location information while ensuring service availability, and achieves 
more stringent privacy protection, such as LBS privacy protection based on private 
information retrieval. However, although the recently proposed homomorphic encryptions 
[71] are available for LBS query results without decrypting user queries, one important 
problem is that these mechanisms do not consider privacy metrics and then the efficiency is 
still a big problem to provide full protection of location privacy. Therefore, there exists a 
tradeoff between privacy and the experienced quality of service for users. 
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4.4 A Hybrid Mechanism 
Notice that, in general, using the three types of LPPMs have their own advantages and 
disadvantages. The mechanism based on policy law is simple to implement, and provide high 
quality of service for users, but the privacy protection effect is poor. The combination of the 
two LPPMs (obfuscation and anonymization) are highly efficient, and can achieve a good 
balance between service quality and location privacy, but the user’s location information or 
service attributes have certain inaccuracies and are vulnerable to attacks with full background 
knowledge. On the other hand, cryptography-based mechanisms can fully guarantee data 
accuracy and security, and provide more stringent privacy protection, but require additional 
hardware support and complex algorithm, communication, and computation overhead. The 
conclusion from these protection mechanisms is that it is important to take into consideration 
the quality of service and resource consumption issues, such as bandwidth, battery and energy 
consumptions, in order to protect all the user’s present, past, and future locations. A hybrid 
LPPM is designed to improve the user's obtained quality of information while guaranteeing a 
good level of privacy protection and minimum energy consumption [51] [72-74]. The design 
strategy of this mechanism takes the data verification process into account and then combines 
the advantages of the three popular LPPMs (such as, obfuscation, anonymization, and 
encryption) to increase the level of privacy and information quality without additional 
consumption of energy. Therefore, this hybrid mechanism dynamically changes the concepts 
of grid area of interest cell sizes in accordance with the variable being measured and selects the 
various protection mechanisms rely on the cell sizes. When the size of the cell increases, then 
the variable interest becomes low and therefore it is more important to protect the real location 
of users.  

4.5 Privacy Protection Challenges and Comparison Analysis 
During the normal operation of the LBS application, each user transmits the location 
information to the LBS provider. Some of the major limitations of these existing applications 
are no restrictions imposed about users' experience, concern, interest and trustworthiness. In 
addition, there is a lack of strong motivations to comply the location services' requirements. 
Therefore, these applications associate the location data (e.g. time and location of the user) are 
vulnerable to erroneous LBS contributions as well as to uncertain contributions from users’ 
selfish behavior. The location of the user is available in spatial as well as temporal form. For 
instance, it is possible for an attacker to obtain the access of users’ current location information 
and history traces, i.e. called as temporal access. In other scenarios, spatial access is 
considered critical if the user’s position is located geographically. Hence, these spatial and 
temporal resolutions associate with the position and time of the user are important parameters 
for defining location privacy. As we have mentioned earlier that there are various mechanisms 
to protect the location privacy such as user anonymization (k-anonymity), location 
obfuscation, encryption-based techniques, etc. Through the evaluation of privacy protection 
mechanism, various kinds of privacy protection factors can be analyzed and determined. By 
hindering these factors, we have analyzed the various challenges of location privacy such as to 
protect users present and past locations, incorporating the user’s data model from anonymous 
and/or perturbed-locations, and finding an appropriate evaluation metrics to quantify location 
privacy. Each individual mechanism has their own advantages and disadvantages by analyzing 
the key issues and architecture of LBS privacy protection, the strengths and weaknesses to 
measure the location privacy of users.  
Table 1 on the following analyzes the various LPPMs presented in this earlier section along 
with their classification, architecture, privacy protection and service quality or resource 
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overhead of the main LBS protection techniques. To indicate the degree of privacy protection 
system, we use the descriptions “high”, “medium” and “low”,  and similarly, the services 
quality is described by “good”, “general” and “poor” respectively. According to [75], the 
quality of service becomes orthogonal to location privacy in the case of LBS applications. 
It can be seen from Table 1 that each type of protection mechanism has different advantages 
and performances for different application requirements. The choice of specific protection 
mechanisms depends on the application scenario and user's actual privacy requirements. For 
instance, the LBS privacy protection mechanism in this scenario is mainly aims at users' 
personalized and different levels of privacy requirements, measuring the privacy protection 
effect and service availability.  
 

Table 1. Summary of various LPPMs for the current privacy measures [75] 
LPPM type & 

solutions 
Architectur

e 
Threats 

from 
Service 
quality- loss 

Resource 
consumption 

Computation
al complexity 

A. Anonymization-based Mechanisms 
1) Tessellation [55] Centralized External High Medium Low 
2) Micro aggregation 
[19] 

Centralized/ 
Distributed External Medium Medium Low 

3) l-diversity[56] Centralized External Medium Medium Low/Medium 
4) Data aggregation 
[58] Distributed Internal/

External Low High High 

B. Obfuscation-based Mechanisms 
1) Position sharing [1] Distributed External Low High Medium 
2) Point-of-Interest 
[30] 

Centralized/ 
Distributed 

Internal/
External Medium Low Medium 

3) 
Random-perturbation 
[63] 

Centralized/ 
Distributed External Medium Medium Medium 

4) Negative survey 
[19] Centralized External Medium Medium Low 

C. Encryption-based Mechanisms 
1) Group-Signature 
[69] Distributed External Low High High 

2) Double Encryption 
[70] Distributed External Low High High 

Hybrid mechanism 
[51] 

Centralized 
/Distributed 

Both 
Internal 

& 
External 

Medium 

Low/mediu/hi
gh, depending 
on encrypted 

records 

High 

 
According to [51], the quality of service is normally measured by the location information loss, 
the size of the invisible area, the Euclidean distance of the true and false position, and the 
user's query generation rate, etc. Hence, an evaluation metric meant to indicate how different 
the generated location data are from the real ones. The degree of privacy protection mainly 
depends on the number of anonymous centralized users or tracks, the amount of added noise, 
the distance between true and false positions, the similarity between the true and blurred 
positions, the level of cooperation of users and the performance of the encryption protocol etc. 
The LPPMs for LBS applications that require reporting real-time location data should be 
simple in terms of computational complexity, if not they will discharge the battery 
consumption issues of the mobile device very quickly. We observe that the principle behind 

https://www.powerthesaurus.org/very_quickly/synonyms
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some complex LPPMs can be implemented in a central architecture, usually called the central 
anonymity server or anonymizer. The protection mechanism can be performed by the users or 
on their mobile device at the expense of its resources, as the LPPM is designed in a distributed 
architecture with taking the resource constraints in mind [76]. Therefore, it is important to 
reduce the amount of resource overhead in order to minimize energy consumption in 
resource-constrained mobile devices. Finally, how to design an optimized LPPM that satisfies 
the service quality and resource overhead according to user privacy requirements and given 
attack model is significantly important research direction for location privacy [77]. 

5. Open Issues and Research Challenges  
We have highlighted the progress of current privacy measures for LBS applications in Section 
4. While working on this topic still attracts many novel countermeasure solutions, some LBS 
privacy challenges remain and needs further discussions. In this section, we present some of 
the major research challenges/ problems in LPPMs for LBSs. 

1) In the Integration of the gap between design and evaluation of LPPMs 
Majority of the existing LPPMs’ design principle and evaluation methods merely consider a 
non-strategic adversary and relatively some LPPMs consider a strategic adversary to minimize 
the privacy risks. For example, the authors of [21], [37], [48] have considered that the concept 
of location privacy is incomplete without adversarial knowledge to track the users visiting 
particular locations. Obviously, there is an absence of strategic measurement mechanisms to 
specify the different LPPMs without considering adversarial knowledge in the evaluation. In 
other words, differential privacy is not sensitive to background knowledge and not even 
considered in the evaluation to quantify LBS privacy [50]. Therefore, there is still a problem to 
integrate the design and evaluation of different LPPMs and their comparative features. The 
primarly challenge therfore is how to design the best LPPMs with consideration of the 
adversarial background knowledge and reasoning ability, so as to reduce the user's privacy 
disclosure risk while providing a tolerable service quality-loss. 

2) Making privacy-preserving mechanisms measurable (specifically in the selection of 
the appropriate privacy metrics) 
Most of the aforementioned evaluation methods for LPPM still focus on providing location 
privacy at each time-instant of issuing a service query, and infrequently consider for protecting 
trajectory privacy from where a number of consecutive queries are reported [30]. There are 
different  intuitive privacy metrics and methods that can be used to evaluate the privacy 
protection performance of different LPMMs. Examples of these privacy metrics [47] includes 
location-k-anonymity and entropy (uncertainty-based), error-based estimator, ε-differential 
privacy, etc. How ever, most of them are specific to a particular systems and attack models and 
therefore these metrics are difficult to use in the universal context. The major challenge is then 
how to find the right (universal) privacy metric for evaluating the effectiveness of location 
privacy.  

3) In Hybrid LPPMs to trade-offs between privacy, service quality, and resource 
consumption  
Recently, due to an increasing number of LPPMs consider the potential tradeoffs between 
location privacy, quality of service and energy consumption for mobile users to make use of 
LBSs. For example, solutions have been provided in [51] that propose a hybrid LPPM in order 
to address the problem of balancing the privacy protection, quality of service and energy 
consumption based on the cells size. This double-encryption mechanism combines the strong 
protection effects of obfuscation, anonymization, and encryption techniques in the design 
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consideration. Moreover, with the increase of mobile computing, the encryption and 
decryption performance of a static location data has been well resolved. 

However, although all the running encryption and decryption algorithms are available in 
mobile devices, the performance of dynamic location data update is still big challenges, which 
are limited on mobile devices and then demand a high amount of energy consumption. This is 
because the type and quantity of location-aware equipments (e.g. automobiles, smart phones, 
etc.) faced by LBS applications are huge, and they will be moved frequently. As a result, they 
will generate massive and frequent updated location data, and these data may be missing and 
discontinuous. In order to ensure the user’s acceptance of LBSs, balancing the joint-effect on 
privacy, service data quality and energy consumption is still an important open problem. 
Therefore, how to design a new optimal privacy protection method with fusion encryption 
technology to protect a dynamic location data during effective service leakage is also an open 
problem and research direction. 

6. Conclusion 
Today’s LBS relies on user's mobile devices and integrate the results of location-related 
research with other new features to produce aggregated knowledge. In this setting, a serious 
privacy issue can discourage an extensive adoption of attractive features. To address this 
problem, a large number of research works has been done to preserve users’ private 
information and to evaluate the user's obtained service quality. In this paper, we have 
discussed the current state-of-the-art LPPMs and analyzed their intuitive evaluation metrics 
within the architecture of user-specific protection model. For this purpose, a block diagram of 
privacy quantification and protection model is presented to quantify the location privacy and 
then to find effective LPPMs in the existing systems. In the next level, we have surveyed the 
main characteristic of privacy requirements and their associated threats to privacy used in 
service quality aware LBSs. We then summarized the existing LBS privacy metrics, and then 
presented privacy countermeasure solutions with a focus on location anonymization, 
obfuscation, encryption-based, and hybrid mechanisms. In the anonymization-based 
mechanism, the LPPMs generate the actual location information via anonymization in which 
the users’ privet data are generalized to a set of different users.  In the obfuscation mechanism, 
the users’ location information is modified without considering the location data from other 
users. In the encryption-based technique, the user’s privacy is preserved using using 
cryptographic techniques, in which the users selectively decide the time and place to report the 
location data to the LBS server. A hybrid mechanism combines the advantages of the above 
three LPPMs to achieve a good balance between location privacy and information quality 
without a high consumption of energy. In addition, this paper summarizes the architecture of 
different LPPMs and qualitative evaluations in terms of the privacy threat model, service 
quality loss, energy consumption, and computational complexity associated with each 
mechanism. Finally, we have presented and discussed several open issues and research 
challenges in the topic of location privacy. 

References 
[1] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel, “A classification of location privacy attacks 

and approaches,” Personal and ubiquitous computing, 18, no. 1, 163-175, 2014.  
Article (CrossRef Link).  
 

https://doi.org/10.1007/s00779-012-0633-z


3214                                                                                               K. Tefera et al.: A Survey of System Architectures, Privacy Preservation, 
and Main Research Challenges on Location-Based Services 

[2] J.J.C. Ying, W.C. Lee, and V.S. Tseng, “Mining geographic-temporal-semantic patterns in 
trajectories for location prediction,” ACM Transactions on Intelligent Systems and Technology 
(TIST), 5, no. 1, 2, 2013. Article (CrossRef Link). 

[3] H. Li, H. Zhu, S. Du, X. Liang, and X. S. Shen, “Privacy leakage of location sharing in mobile 
social networks: Attacks and defense,” IEEE Transactions on Dependable and Secure Computing, 
15, no. 4, 646-660, 2018 Article (CrossRef Link).  

[4] I. Bilogrevic, K. Huguenin, S. Mihaila, R. Shokri,and  J.P. Hubaux, “Predicting users' motivations 
behind location check-ins and utility implications of privacy protection mechanisms,” in Proc. of 
22nd Network and Distributed System Security Symposium (NDSS), 2015.  
Article (CrossRef Link).  

[5] P. Skvortsov, B. Schembera, F. Dürr, and K. Rothermel, “Optimized Secure Position Sharing with 
Non-trusted Servers,” arXiv preprint arXiv:1702.08377, 2017. Article (CrossRef Link).  

[6] K. G. Shin, X. Ju, Z. Chen, and X. Hu, “Privacy protection for users of location-based services,” 
IEEE Wireless Communications, 19, no. 1, 30-39, 2012. Article (CrossRef Link).  

[7] P. Aditya, B. Bhattacharjee, P. Druschel, V. Erdélyi, and M. Lentz, “Brave new world: Privacy 
risks for mobile users,” ACM SIGMOBILE Mobile Computing and Communications Review, 18, 
no. 3, 49-54, 2015. Article (CrossRef Link).  

[8] X. Yi, R. Paulet, E. Bertino, and V. Varadharajan, “Practical approximate k nearest neighbor 
queries with location and query privacy,” IEEE Transactions on Knowledge and Data Engineering, 
28, no. 6, 1546-1559, 2016. Article (CrossRef Link).  

[9] P. Golle,and  K. Partridge, “On the anonymity of home/work location pairs,” in Proc. of 
International Conference on Pervasive Computing, Springer, Berlin, Heidelberg, pp. 390-397, 
2009. Article (CrossRef Link).  

[10] S. Gambs, M.O. Killijian, and M.N. del Prado Cortez, “Show me how you move and I will tell you 
who you are,” in Proc. of the 3rd ACM SIGSPATIAL International Workshop on Security and 
Privacy in GIS and LBS, pp. 34-41, 2010. Article (CrossRef Link).  

[11] C. Song, Z. Qu, N. Blumm, and A.L. Barabási, “Limits of predictability in human mobility,” 
Science, 327, no. 5968, 1018-1021, 2010. Article (CrossRef Link).  

[12] J. Freudiger, R. Shokri, and J.P. Hubaux, “Evaluating the Privacy Risk of Location-Based 
Services,” Financial Cryptography and Data Security, 31-46, 2012. Article (CrossRef Link).  

[13] J. Krumm, “Inference Attacks on Location Tracks,” nternational Conference on Pervasive 
Computing, 127-143, 2007. Article (CrossRef Link).  

[14] B. Niu, Q. Li, X. Zhu,  G Cao, and H. Li, Qinghua Li, Xiaoyan Zhu, Guohong Cao, and Hui Li, 
“Enhancing privacy through caching in location-based services,” in Proc. of Computer 
Communications (INFOCOM), 2015 IEEE Conference on, pp. 1017-1025, 2015.  
Article (CrossRef Link).  

[15] W. Li, B. Niu, H. Li, and F Li, “Privacy-preserving strategies in service quality aware 
location-based services,” in Proc. of Communications (ICC), 2015 IEEE International Conference 
on, pp. 7328-7334, 2015. Article (CrossRef Link).  

[16] Y. Wang, Y. Xia, J. Hou, S. Gao, X. Nie, and Q. Wang, “A fast privacy-preserving framework for 
continuous location-based queries in road networks,” Journal of Network and Computer 
Applications, 53, 57-73, 2015. Article (CrossRef Link).  

[17] C. Bettini, S. Mascetti, XS. Wang, D. Freni, and S. Jajodia, “Anonymity and historical-anonymity 
in location-based services,” Privacy in location-based applications, Springer, Berlin, Heidelberg, 
pp. 1-30, 2009.  

[18] Gedik, Bugra, and L. Liu, “Location privacy in mobile systems: A personalized anonymization 
model,” in Proc. of Distributed computing systems, 2005. ICDCS 2005. Proceedings. 25th IEEE 
international conference on, pp. 620-629, 2005. Article (CrossRef Link).  

[19] M.M. Groat, B. Edwards, J. Horey, W. He, and S. Forrest, “Enhancing privacy in participatory 
sensing applications with multidimensional data,” in Proc. of Pervasive Computing and 
Communications (PerCom), 2012 IEEE International Conference on, pp. 144-152, 2012.  
Article (CrossRef Link).  
 

https://scholar.google.com/citations?user=9OdHL5wAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=DFjmS6AAAAAJ&hl=en&oi=sra
https://doi.org/10.1145/2542182.2542184
https://doi.org/10.1109/TDSC.2016.2604383
https://doi.org/10.14722/ndss.2015.23032
https://arxiv.org/abs/1702.08377
https://doi.org/10.1109/MWC.2012.6155874
https://doi.org/10.1145/2721896.2721907
https://doi.org/10.1109/TKDE.2016.2520473
https://doi.org/10.1007/978-3-642-01516-8_26
https://doi.org/10.1145/1868470.1868479
https://doi.org/10.1126/science.1177170
https://doi.org/10.1007/978-3-642-27576-0_3
https://doi.org/10.1007/978-3-540-72037-9_8
https://doi.org/10.1109/INFOCOM.2015.7218474
https://doi.org/10.1109/ICC.2015.7249497
https://doi.org/10.1016/j.jnca.2015.01.004
https://doi.org/10.1109/ICDCS.2005.48
https://doi.org/10.1109/PerCom.2012.6199861


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019                                         3215 

[20] A.R. Beresford, and F. Stajano, “Location privacy in pervasive computing,” IEEE Pervasive 
computing, 2, no. 1, 46-55, 2003. Article (CrossRef Link).  

[21] J. Freudiger, M.H. Manshaei, J.P. Hubaux, and D. C. Parkes, “On non-cooperative location 
privacy: a game-theoretic analysis,” in Proc. of the 16th ACM conference on Computer and 
communications security, pp. 324-337, 2009. Article (CrossRef Link).  

[22] X. Chen, A. Mizera, and J. Pang, “Activity tracking: A new attack on location privacy,” in Proc. of 
Communications and Network Security (CNS), 2015 IEEE Conference on, pp. 22-30, 2015.  
Article (CrossRef Link).  

[23] H Jafari, M Nazari, S. Shamshirband, “Optimization of energy consumption in wireless sensor 
networks using density-based clustering algorithm,” International Journal of Computers and 
Applications, 1-10, 2018. Article (CrossRef Link).  

[24] S. Shamshirband, and H. Soleimani, “LAAPS: an efficient file-based search in unstructured 
peer-to-peer networks using reinforcement algorithm,” International Journal of Computers and 
Applications, 1-8, 2018. Article (CrossRef Link).  

[25] PGV Naranjo, Z Pooranian, S Shamshirband, J.H. Abawajy, and M. Conti, “Fog over virtualized 
IoT: New opportunity for context-aware networked applications and a Case Study,” Applied 
Sciences, 7, no. 12, 1325, 2017. Article (CrossRef Link).  

[26] M. Shojafar, N. Cordeschi, JH. Abawajy, and E. Baccarelli, “Adaptive energy-efficient qos-aware 
scheduling algorithm for tcp/ip mobile cloud,” in Proc. of Globecom Workshops (GC Wkshps), 
2015 IEEE, pp. 1-6, 2015. Article (CrossRef Link).  

[27] R. Shokri, “Quantifying and protecting location privacy [Ph.D. Thesis],” it-Information 
Technology, 57, no. 4, 257-263, 2015. Article (CrossRef Link). 

[28] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.P. Hubaux, and J.Y. Le Boudec, “Protecting 
location privacy: optimal strategy against localization attacks,” in Proc. of the 2012 ACM 
conference on Computer and communications security, pp. 617-627, 2012.  
Article (CrossRef Link).  

[29] R. Shokri, G. Theodorakopoulos, and C. Troncoso, “Privacy games along location traces: A 
game-theoretic framework for optimizing location privacy,” ACM Transactions on Privacy and 
Security (TOPS), 19, no. 4, 11, 2017. Article (CrossRef Link). 

[30] H. Shen, G. Bai, M. Yang, and Z. Wang, “Protecting trajectory privacy: A user-centric analysis,” 
Journal of Network and Computer Applications, 82, 128-139, 2017. Article (CrossRef Link).  

[31] X. Zhang, X. Gui, F. Tian, S. Yu, and J. An, “Privacy quantification model based on the Bayes 
conditional risk in Location-based services,” Tsinghua Science and Technology, 19, no. 5, 452-462, 
2014. Article (CrossRef Link).  

[32] V. Bindschaedler,and R. Shokri, “Synthesizing plausible privacy-preserving location traces,” in 
Proc. of Security and Privacy (SP), 2016 IEEE Symposium on, pp. 546-563, 2016.  
Article (CrossRef Link).  

[33] W.X. Zhao, N. Zhou, W. Zhang, J.R. Wen, S. Wang, and E.Y. Chang, “A probabilistic 
lifestyle-based trajectory model for social strength inference from human trajectory data,” ACM 
Transactions on Information Systems (TOIS), 35, no. 1, 8, 2016. Article (CrossRef Link).  

[34] J. Freudiger, M. H. Manshaei, J.Y. Le Boudec, and J. P. Hubaux, “On the age of pseudonyms in 
mobile ad hoc networks,” in Proc. of INFOCOM, 2010 Proceedings IEEE, pp. 1-9, 2010.  
Article (CrossRef Link).  

[35] Y. Pan, and J. Li Pan, “Cooperative pseudonym change scheme based on the number of neighbors 
in VANETs,” Journal of Network and Computer Applications, 36, no. 6, 1599-1609, 2013.  
Article (CrossRef Link).  

[36] X. Liu, H. Zhao, M. Pan, H. Yue, X. Li, and Y. Fang, “Traffic-aware multiple mix zone placement 
for protecting location privacy,” in Proc. of INFOCOM, 2012 Proceedings IEEE, pp. 972-980, 
2012. Article (CrossRef Link).  

[37] R. Shokri, G. Theodorakopoulos, G. Danezis, J.P. Hubaux, and J.Y. Le Boudec, “Quantifying 
location privacy: the case of sporadic location exposure,” in Proc. of International Symposium on 
Privacy Enhancing Technologies Symposium, pp. 57-76, 2011. Article (CrossRef Link).  

 

https://doi.org/10.1109/MPRV.2003.1186725
https://doi.org/10.1145/1653662.1653702
https://doi.org/10.1109/CNS.2015.7346806
https://scholar.google.com/citations?user=BaIFxycAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=yPnZw3cAAAAJ&hl=en&oi=sra
https://doi.org/10.1080/1206212X.2018.1497117
https://doi.org/10.1080/1206212X.2018.1511319
https://doi.org/10.3390/app7121325
https://scholar.google.com/citations?user=DIEJuwoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=mGjq7OAAAAAJ&hl=en&oi=sra
https://doi.org/10.1109/GLOCOMW.2015.7413988
https://doi.org/10.1515/itit-2015-0024
https://doi.org/10.1145/2382196.2382261
https://doi.org/10.1145/3009908
https://doi.org/10.1016/j.jnca.2017.01.018
https://doi.org/10.1109/TST.2014.6919821
https://doi.org/10.1109/SP.2016.39
https://doi.org/10.1145/2948064
https://doi.org/10.1109/INFCOM.2010.5461975
https://doi.org/10.1016/j.jnca.2013.02.003
https://doi.org/10.1109/INFCOM.2012.6195848
https://doi.org/10.1007/978-3-642-22263-4_4


3216                                                                                               K. Tefera et al.: A Survey of System Architectures, Privacy Preservation, 
and Main Research Challenges on Location-Based Services 

[38] J. Shi, R. Zhang, Y. Liu, and Y. Zhang, “Prisense: privacy-preserving data aggregation in 
people-centric urban sensing systems,” in Proc. of INFOCOM, 2010 Proceedings IEEE, pp. 1-9, 
2010. Article (CrossRef Link).  

[39] R. Shokri, J. Freudiger, and J. P. Hubaux, “A unified framework for location privacy,” No. 
EPFL-REPORT-148708,  2010. Article (CrossRef Link).  

[40] D. Houshmand Mozafari, “Providing Location Privacy for the Users of Location-based Services,” 
2012.  

[41] Li, Qinghua, and Guohong Cao, “Efficient and privacy-preserving data aggregation in mobile 
sensing,” in Proc. of Network Protocols (ICNP), 2012 20th IEEE International Conference on, pp. 
1-10, 2012. Article (CrossRef Link).  

[42] R. Zhang, J. Shi, Y. Zhang, and C.Zhang, “Verifiable privacy-preserving aggregation in 
people-centric urban sensing systems,” IEEE Journal on Selected Areas in Communications, 31, 
no. 9, 268-278, 2013. Article (CrossRef Link).  

[43] Z. Xu, H. Zhang, and X. Yu, “Multiple mix-zones deployment for continuous location privacy 
protection,” in Proc. of Trustcom/BigDataSE/I SPA, 2016 IEEE, pp. 760-766, 2016.  
Article (CrossRef Link).  

[44] B. Niu, Q. Li, X. Zhu, G. Cao,and H. Li, “Achieving k-anonymity in privacy-aware location-based 
services,” in Proc. of INFOCOM, 2014 Proceedings IEEE, pp. 754-762, 2014.  
Article (CrossRef Link).  

[45] B. Niu, Z. Zhang, X. Li, and H. Li, “Privacy-area aware dummy generation algorithms for 
location-based services,” in Proc. of Communications (ICC), 2014 IEEE International Conference 
on, pp. 957-962, 2014. Article (CrossRef Link).  

[46] X. Liu, K. Liu, L. Guo, X. Li, and Y. Fang, “A game-theoretic approach for achieving k-anonymity 
in location based services,” in Proc. of INFOCOM, 2013 Proceedings IEEE, pp. 2985-2993, 2013. 
Article (CrossRef Link).  

[47] R Shokri, J Freudiger, M Jadliwala, and J.P. Hubaux, “A distortion-based metric for location 
privacy,” in Proc. of the 8th ACM workshop on Privacy in the electronic society, pp. 21-30, 2009. 
Article (CrossRef Link).  

[48] R. Shokri, G. Theodorakopoulos, J.Y. Le Boudec, and J.P. Hubaux, “Quantifying location 
privacy,” in Proc. of Security and privacy (sp), 2011 ieee symposium on, pp. 247-262, 2011. 
Article (CrossRef Link).  

[49] R. Shokri, “Privacy games: Optimal user-centric data obfuscation,” Proceedings on Privacy 
Enhancing Technologies, 2015, no. 2, 299-315, 2015. Article (CrossRef Link).  

[50] M.E. Andrés, N.E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi, “Geo-indistinguishability: 
Differential privacy for location-based systems,” in Proc. of the 2013 ACM SIGSAC conference on 
Computer & communications security, pp. 901-914, 2013. Article (CrossRef Link).  

[51] I.J. Vergara-Laurens, D. Mendez, L.G. Jaimes, and M. Labrador, “A-PIE: An algorithm for 
preserving privacy, quality of information, and energy consumption in Participatory Sensing 
Systems,” Pervasive and Mobile Computing, 32, 93-112, 2016. Article (CrossRef Link).  

[52] T. Xu and Y. Cai, “Exploring historical location data for anonymity preservation in location-based 
services,” in Proc. of INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, 
pp. 547-555, 2008. Article (CrossRef Link).  

[53] R.H. Hwang, Y.L. Hsueh, and H.W.Chung, “A novel time-obfuscated algorithm for trajectory 
privacy protection,” IEEE Transactions on Services Computing, 7, no. 2, 126-139, 2014.  
Article (CrossRef Link).  

[54] S. Gao, J. Ma, W. Shi, G. Zhan, and C. Sun, “TrPF: A trajectory privacy-preserving framework for 
participatory sensing,” IEEE Transactions on Information Forensics and Security, 8, no. 6, 
874-887, 2013. Article (CrossRef Link).  

[55] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Triandopoulos, “Anonysense: 
privacy-aware people-centric sensing,” in Proc. of the 6th international conference on Mobile 
systems, applications, and services, pp. 211-224, 2008. 

 
 

https://doi.org/10.1109/INFCOM.2010.5462147
https://petsymposium.org/2010/papers/hotpets10-Shokri.pdf
https://doi.org/10.1109/ICNP.2012.6459985
https://doi.org/10.1109/JSAC.2013.SUP.0513024
https://doi.org/10.1109/TrustCom.2016.0136
https://doi.org/10.1109/INFOCOM.2014.6848002
https://doi.org/10.1109/ICC.2014.6883443
https://doi.org/10.1109/INFCOM.2013.6567110
https://doi.org/10.1145/1655188.1655192
https://doi.org/10.1109/SP.2011.18
https://doi.org/10.1515/popets-2015-0024
https://doi.org/10.1145/2508859.2516735
https://doi.org/10.1016/j.pmcj.2016.06.020
https://doi.org/10.1109/INFOCOM.2008.103
https://doi.org/10.1109/TSC.2013.55
https://doi.org/10.1109/TIFS.2013.2252618


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019                                         3217 

[56] A. Solanas, Ú. González-Nicolás, and A. Martínez-Ballesté, “Mixing genetic algorithms and 
V-MDAV to protect microdata,” in Proc. of Computational Intelligence for Privacy and Security, 
Springer, Berlin, Heidelberg, pp. 115-133, 2012. Article (CrossRef Link).  

[57] B. Zhou,and J. Pei, “The k-anonymity and l-diversity approaches for privacy preservation in social 
networks against neighborhood attacks,” Knowledge and Information Systems, 28, no. 1, 47-77, 
2011. Article (CrossRef Link).  

[58] H. Jin, L. Su, H Xiao, and K. Nahrstedt, “Inception: Incentivizing privacy-preserving data 
aggregation for mobile crowd sensing systems,” in Proc. of the 17th ACM International 
Symposium on Mobile Ad Hoc Networking and Computing, pp. 341-350, 2016.  
Article (CrossRef Link).  

[59] D.E. Cho, S. Kim, and S.Yeo, “Double privacy layer architecture for big data framework,” 
International Journal of Software Engineering and Its Applications, 10, no. 2,  271-278, 2016. 
Article (CrossRef Link).  

[60] B. Lee, J. Oh, H. Yu,and J. Kim , “Protecting location privacy using location semantics,” in Proc. 
of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 
1289-1297, 2011. Article (CrossRef Link).  

[61] P. Wightman, W. Coronell, D. Jabba, M. Jimeno, and M. Labrador, “Evaluation of location 
obfuscation techniques for privacy in location based information systems,” in Proc. of 
Communications (LATINCOM), 2011 IEEE Latin-American Conference on, pp. 1-6, 2011.  
Article (CrossRef Link).  

[62] R.K. Ganti, N. Pham, YE. Tsai, and T.F. Abdelzaher, “PoolView: stream privacy for grassroots 
participatory sensing,” in Proc. of the 6th ACM conference on Embedded network sensor systems, 
pp. 281-294, 2008. Article (CrossRef Link).  

[63] D. Lian, X. Xie, VW.Zheng, NJ. Yuan, F. Zhang, and E. Chen, “CEPR: A collaborative 
exploration and periodically returning model for location prediction,” ACM Transactions on 
Intelligent Systems and Technology (TIST), 6, no. 1, 8, 2015. Article (CrossRef Link).  

[64] I.J. Vergara-Laurens, and M.A. Labrador, “Preserving privacy while reducing power consumption 
and information loss in lbs and participatory sensing applications,” In GLOBECOM Workshops 
(GC Wkshps), 2011 IEEE, pp. 1247-1252, 2011. Article (CrossRef Link).  

[65] W.X. Zhao, N. Zhou, W. Zhang, J.R. Wen, S. Wang, and E.Y. Chang, “A probabilistic 
lifestyle-based trajectory model for social strength inference from human trajectory data,” ACM 
Transactions on Information Systems (TOIS), 35, no. 1, 8, 2016. Article (CrossRef Link).  

[66] R. Shokri, G. Theodorakopoulos, P. Papadimitratos, E. Kazemi, and J. P. Hubaux, “Hiding in the 
mobile crowd: Location privacy through collaboration,” IEEE transactions on dependable and 
secure computing, 11, no. 3, 266-279, 2014. Article (CrossRef Link).  

[67] I.J. Vergara-Laurens, D. Mendez-Chaves, and M.A. Labrador, “On the interactions between 
privacy-preserving, incentive, and inference mechanisms in participatory sensing systems,” in 
Proc. of International Conference on Network and System Security, pp. 614-620, 2013.  
Article (CrossRef Link).  

[68] S. Hoteit, S. Secci, S. Sobolevsky, G.Pujolle, and C. Ratti, “Estimating real human trajectories 
through mobile phone data,” in Proc. of MDM 2013-14th IEEE International Conference on 
Mobile Data Management, pp. 148-153, 2013. Article (CrossRef Link).  

[69] M.C. Gonzalez, C.A. Hidalgo, and A.L. Barabasi, “Understanding individual human mobility 
patterns,” nature, 453, no. 7196, 779-782, 2008. Article (CrossRef Link).  

[70] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.L. Tan, “Private queries in location 
based services: anonymizers are not necessary,” in Proc. of the 2008 ACM SIGMOD international 
conference on Management of data, pp. 121-132, 2008. Article (CrossRef Link).  

[71] Z. Jing, M. Chen, and F. Hongbo, “WSN key management scheme based on fully bomomorphic 
encryption,” in Proc. of Control And Decision Conference (CCDC), 2017 29th Chinese, pp. 
7304-7309, 2017. Article (CrossRef Link).  

[72] A.N. Khan, M.L.M. Kiah, M. Ali, SA Madani, and S. Shamshirband, “BSS: block-based sharing 
scheme for secure data storage services in mobile cloud environment,” The Journal of 
Supercomputing, 70, no. 2,  946-976, 2014. Article (CrossRef Link).  

https://doi.org/10.1007/978-3-642-25237-2_8
https://doi.org/10.1007/s10115-010-0311-2
https://doi.org/10.1145/2942358.2942375
https://doi.org/10.14257/ijseia.2016.10.2.22
https://doi.org/10.1145/2020408.2020602
https://doi.org/10.1109/LatinCOM.2011.6107399
https://doi.org/10.1145/1460412.1460440
https://doi.org/10.1145/2629557
https://doi.org/10.1109/GLOCOMW.2011.6162381
https://doi.org/10.1145/2948064
https://doi.org/10.1109/TDSC.2013.57
https://doi.org/10.1007/978-3-642-38631-2_47
https://doi.org/10.1109/MDM.2013.85
https://doi.org/10.1038/nature06958
https://doi.org/10.1145/1376616.1376631
https://doi.org/10.1109/CCDC.2017.7978504
https://doi.org/10.1007/s11227-014-1269-8


3218                                                                                               K. Tefera et al.: A Survey of System Architectures, Privacy Preservation, 
and Main Research Challenges on Location-Based Services 

[73] A.N. Khan, M.L.M. Kiah, M. Ali, and S. Shamshirband, “A cloud-manager-based re-encryption 
scheme for mobile users in cloud environment: a hybrid approach,” Journal of Grid Computing, 13, 
no. 4, 651-675, 2015. Article (CrossRef Link).  

[74] M. Shojafar, N. Cordeschi, J.H. Abawajy, and E. Baccarelli, “Adaptive energy-efficient qos-aware 
scheduling algorithm for tcp/ip mobile cloud,” in Proc. of Globecom Workshops (GC Wkshps), 
2015 IEEE, pp. 1-6, 2015. Article (CrossRef Link).  

[75] I.J. Vergara-Laurens, L.G. Jaimes, and M. A. Labrador, “Privacy-preserving mechanisms for 
crowd sensing: Survey and research challenges,” IEEE Internet of Things Journal, 4, no. 4, 
855-869, 2017. Article (CrossRef Link).  

[76] M.R. Ra, B. Liu, T.F. La Porta, and R. Govindan, “Medusa: A programming framework for 
crowd-sensing applications,” in Proc. of the 10th international conference on Mobile systems, 
applications, and services, ACM, pp. 337-350, 2012. Article (CrossRef Link).  

[77] S. Mishra, R. Sagban, A. Yakoob, and N.Gandhi, “Swarm intelligence in anomaly detection 
systems: an overview,” International Journal of Computers and Applications, 1-10, 2018.  
Article (CrossRef Link).  

 

 
 
 
 
 
 
 
 
 
 

Mulugeta K.Tefera received a Bachelor degree in Electrical and Electronics Technology 
from Adama University, Adama-Ethiopia in 2008 and M.Eng degree in Signal and 
Information Processing Technology from Tianjin University of Technology and Education 
(TUTE), P.R. China in 2011. He is currently pursuing a Ph.D. degree in information and 
communication engineering with the School of Computer and Communication Engineering, 
University of Science and Technology Beijing (USTB), Beijing, China. His research interests 
include; Wireless Sensor Network, Mobile Crowd Sensing and Computing, and 
next-generation of Internet of Things (IOT). 
 

 
Xiaolong Yang received the B.Eng., M.S., and Ph.D degrees in communication and 
information system from the University of Electronic Science and Technology of China 
(UESTC), Chengdu, China, in 1993, 1996, and 2004, respectively. He is currently a Professor 
with the School of Computer and Communication Engineering and the Institute of Advanced 
Networking Technologies and New Services (ANTS), University of Science and Technology 
Beijing, Beijing, China. His research focuses on optical switching and Internetworking, and 
next-generation Internet. He has fulfilled more than 40 research projects, including the 
National Natural Science Foundation of China, National Hi-Tech Research and Development 
Program (863 Program), and National Key Basic Research Program (973 Program). He has 

authored more than 120 papers in his research fields and hold 30 patents. 
 

Qifu Tyler Sun received the B. Eng. (first class honors) and Ph.D. degrees from the 
Department of Information Engineering, The Chinese University of Hong Kong, Shatin, NT, 
Hong Kong, in 2005 and 2009, respectively. He has been a postdoctoral fellow at the Institute 
of Network Coding, the Chinese University of Hong Kong and a visiting research fellow at 
the University of New South Wales. He is currently an associate professor at the School of 
Computer and Communication Engineering, University of Science and Technology Beijing, 
China. He has been holding, as the principal investigator, three research grants of National 
Science Foundation of China. 

https://doi.org/10.1007/s10723-015-9352-9
https://doi.org/10.1109/GLOCOMW.2015.7413988
https://doi.org/10.1109/JIOT.2016.2594205
https://doi.org/10.1145/2307636.2307668
https://doi.org/10.1080/1206212X.2018.1521895

